DEFOG: Deep Learning with Attention Mechanism Enabled Cross-Age Face Recognition

IF 6.6 1区 计算机科学 Q1 Multidisciplinary Tsinghua Science and Technology Pub Date : 2024-12-30 DOI:10.26599/TST.2024.9010107
Biaokai Zhu;Lu Li;Xiaochun Hu;Fulin Wu;Zhaojie Zhang;Shengnan Zhu;Yanxi Wang;Jiali Wu;Jie Song;Feng Li;Sanman Liu;Jumin Zhao
{"title":"DEFOG: Deep Learning with Attention Mechanism Enabled Cross-Age Face Recognition","authors":"Biaokai Zhu;Lu Li;Xiaochun Hu;Fulin Wu;Zhaojie Zhang;Shengnan Zhu;Yanxi Wang;Jiali Wu;Jie Song;Feng Li;Sanman Liu;Jumin Zhao","doi":"10.26599/TST.2024.9010107","DOIUrl":null,"url":null,"abstract":"As individuals age, their facial features change, which can hinder the accuracy of face recognition technology. To address this challenge, a new cross-age face recognition algorithm, leveraging deep learning and a loss function (Loss), has been proposed in this article. The Retinaface algorithm detects faces in images, while the Resnet-50 model is enhanced by incorporating an attention mechanism and improved softmax loss (Arcface) to extract facial features. This approach has been tested on publicly available and custom-built datasets, and its performance has been compared to other cross-age face recognition techniques. The results show that the model effectively recognizes faces across different age groups.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 3","pages":"1342-1358"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817764","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817764/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

As individuals age, their facial features change, which can hinder the accuracy of face recognition technology. To address this challenge, a new cross-age face recognition algorithm, leveraging deep learning and a loss function (Loss), has been proposed in this article. The Retinaface algorithm detects faces in images, while the Resnet-50 model is enhanced by incorporating an attention mechanism and improved softmax loss (Arcface) to extract facial features. This approach has been tested on publicly available and custom-built datasets, and its performance has been compared to other cross-age face recognition techniques. The results show that the model effectively recognizes faces across different age groups.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习与注意机制支持跨年龄人脸识别
随着个人年龄的增长,他们的面部特征会发生变化,这可能会影响人脸识别技术的准确性。为了应对这一挑战,本文提出了一种新的跨年龄人脸识别算法,该算法利用深度学习和损失函数(loss)。retaface算法在图像中检测人脸,而Resnet-50模型通过纳入注意机制和改进的softmax loss (Arcface)来提取面部特征。该方法已在公开可用和定制的数据集上进行了测试,并将其性能与其他跨年龄人脸识别技术进行了比较。结果表明,该模型能有效识别不同年龄段的人脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
期刊最新文献
Front Cover Contents Fake News Detection: Extendable to Global Heterogeneous Graph Attention Network with External Knowledge A Fine-Grained Image Classification Model Based on Hybrid Attention and Pyramidal Convolution A First Successful Factorization of RSA-2048 Integer by D-Wave Quantum Computer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1