Effect of SFD on rubbing-induced vibration characteristics in dual-rotor-blade-casing system

IF 1.9 3区 工程技术 Q3 MECHANICS Meccanica Pub Date : 2024-11-08 DOI:10.1007/s11012-024-01903-1
Songtao Zhao, Ming Liu, Hui Ma, Hong Guan, Shan Chang, Xinxing Ma, Bangchun Wen
{"title":"Effect of SFD on rubbing-induced vibration characteristics in dual-rotor-blade-casing system","authors":"Songtao Zhao,&nbsp;Ming Liu,&nbsp;Hui Ma,&nbsp;Hong Guan,&nbsp;Shan Chang,&nbsp;Xinxing Ma,&nbsp;Bangchun Wen","doi":"10.1007/s11012-024-01903-1","DOIUrl":null,"url":null,"abstract":"<div><p>In a dual-rotor (DR)-blade-casing system, the squeeze film damper (SFD) plays a crucial role in vibration suppression to reduce the vibration level. This paper investigates the impact of SFD on the vibration responses, specifically considering blade-casing rubbing. The Timoshenko beam element is employed to simulate the casing and rotor, while the blade and disk are established using the lumped-mass element. A dynamic model of the DR-blade-casing system with SFD is then developed, incorporating the effects of rubbing. The influence of parameters such as unbalance and blade-casing clearance on the dynamic response is analyzed for systems with and without SFD. The results indicate that SFD effectively reduces the amplitude of the characteristic frequency corresponding to 4-blade rubbing. Additionally, the rubbing fault also induces the combined frequencies between rotating frequencies, integer frequencies, and fractional frequencies. These findings offer valuable insights for fault diagnosis and aero-engine system design.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 12","pages":"2265 - 2281"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01903-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a dual-rotor (DR)-blade-casing system, the squeeze film damper (SFD) plays a crucial role in vibration suppression to reduce the vibration level. This paper investigates the impact of SFD on the vibration responses, specifically considering blade-casing rubbing. The Timoshenko beam element is employed to simulate the casing and rotor, while the blade and disk are established using the lumped-mass element. A dynamic model of the DR-blade-casing system with SFD is then developed, incorporating the effects of rubbing. The influence of parameters such as unbalance and blade-casing clearance on the dynamic response is analyzed for systems with and without SFD. The results indicate that SFD effectively reduces the amplitude of the characteristic frequency corresponding to 4-blade rubbing. Additionally, the rubbing fault also induces the combined frequencies between rotating frequencies, integer frequencies, and fractional frequencies. These findings offer valuable insights for fault diagnosis and aero-engine system design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SFD对双转子-叶片-机匣系统摩擦激振特性的影响
在双转子-叶片-机匣系统中,挤压膜阻尼器在降低振动水平方面起着至关重要的作用。本文特别考虑了叶片-机匣摩擦对振动响应的影响。采用Timoshenko梁单元模拟机匣和转子,采用集总质量单元建立叶片和盘。在此基础上,建立了考虑摩擦影响的含SFD的dr -叶片-机匣系统动力学模型。分析了不平衡、叶片-机匣间隙等参数对系统动态响应的影响。结果表明,SFD有效地降低了四叶片摩擦对应的特征频率幅值。此外,摩擦故障还诱发了旋转频率、整数频率和分数频率的组合频率。这些发现为故障诊断和航空发动机系统设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
期刊最新文献
Dynamics analysis of the round-wheel compound bow model Multi-state meshing characteristics and global nonlinear dynamics of a spur gear system considering local tooth breakage Dynamic mechanical behavior of ice with different cotton contents On the effect of vertical motion of roll system upon dynamic behavior and stability of rolling mill A simple method for solving damped Duffing oscillators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1