Stability analysis of axially loaded sandwich beams with a five-layered composite core made of viscoelastic and functionally graded material layers

IF 1.9 3区 工程技术 Q3 MECHANICS Meccanica Pub Date : 2024-11-07 DOI:10.1007/s11012-024-01889-w
Satyajit Panda, Nitin Kumar
{"title":"Stability analysis of axially loaded sandwich beams with a five-layered composite core made of viscoelastic and functionally graded material layers","authors":"Satyajit Panda,&nbsp;Nitin Kumar","doi":"10.1007/s11012-024-01889-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a five-layered viscoelastic composite laminate is proposed for the constrained layer damping (CLD) treatment of axially loaded beam structures. The CLD arrangement is taken in the conventional form of a sandwich beams. But, the main focus is to investigate the change in the static and dynamic stability characteristics of the axially loaded sandwich beam while the conventional pure viscoelastic core layer is replaced by the present five-layered composite laminate. First, the design of the five-layered composite laminate using three viscoelastic and two meatal-ceramic functionally graded (FG) material layers is presented. Next, an incremental nonlinear finite element model of the axially loaded sandwich beam is formulated based on the fractional Zener constitutive relation and harmonic balance method (HBM). The HBM is implemented with an arbitrary number of harmonic terms. The corresponding complexity in the formulation of the nonlinear system matrices/vectors is handled using a special factorization of the nonlinear strain–displacement matrix and an analytical time-integration strategy. The numerical results mainly illustrate the influence of the geometrical and graded material properties of the FG layers on the critical buckling load and damping in the axially loaded sandwich beam. These results reveal that the five-layered composite core provides not only an augmented damping for attenuation of vibration through the parametric resonance but also a significantly improved static stability of the axially loaded sandwich beam in comparison to the conventional pure viscoelastic core. Therefore, the present five-layer composite laminate may be a potential material for an improved CLD treatment of axially loaded beam structures.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 12","pages":"2227 - 2263"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01889-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a five-layered viscoelastic composite laminate is proposed for the constrained layer damping (CLD) treatment of axially loaded beam structures. The CLD arrangement is taken in the conventional form of a sandwich beams. But, the main focus is to investigate the change in the static and dynamic stability characteristics of the axially loaded sandwich beam while the conventional pure viscoelastic core layer is replaced by the present five-layered composite laminate. First, the design of the five-layered composite laminate using three viscoelastic and two meatal-ceramic functionally graded (FG) material layers is presented. Next, an incremental nonlinear finite element model of the axially loaded sandwich beam is formulated based on the fractional Zener constitutive relation and harmonic balance method (HBM). The HBM is implemented with an arbitrary number of harmonic terms. The corresponding complexity in the formulation of the nonlinear system matrices/vectors is handled using a special factorization of the nonlinear strain–displacement matrix and an analytical time-integration strategy. The numerical results mainly illustrate the influence of the geometrical and graded material properties of the FG layers on the critical buckling load and damping in the axially loaded sandwich beam. These results reveal that the five-layered composite core provides not only an augmented damping for attenuation of vibration through the parametric resonance but also a significantly improved static stability of the axially loaded sandwich beam in comparison to the conventional pure viscoelastic core. Therefore, the present five-layer composite laminate may be a potential material for an improved CLD treatment of axially loaded beam structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘弹性与功能梯度五层复合芯层轴向加载夹芯梁稳定性分析
本文提出了一种用于轴向载荷梁结构约束层阻尼(CLD)处理的五层粘弹性复合层板。CLD的布置采用传统的夹层梁形式。但是,主要研究的是轴向加载夹层梁的静、动稳定特性的变化,而传统的纯粘弹性核心层被五层复合材料层合板所取代。首先,设计了由三层粘弹性材料和两层肉陶瓷功能梯度材料组成的五层复合材料层板。其次,基于分数阶齐纳本构关系和谐波平衡法,建立了轴向加载夹层梁的增量非线性有限元模型。HBM是用任意数量的谐波项实现的。利用非线性应变-位移矩阵的特殊因式分解和解析时间积分策略处理了非线性系统矩阵/向量的相应复杂性。数值结果主要说明了FG层的几何特性和材料梯度特性对轴向加载夹层梁临界屈曲载荷和阻尼的影响。结果表明,与传统的纯粘弹性芯相比,五层复合芯不仅可以通过参数共振衰减振动,而且可以显著提高轴向加载夹层梁的静稳定性。因此,本发明的五层复合层压板可能是一种改进轴向载荷梁结构CLD处理的潜在材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
期刊最新文献
Dynamics analysis of the round-wheel compound bow model Multi-state meshing characteristics and global nonlinear dynamics of a spur gear system considering local tooth breakage Dynamic mechanical behavior of ice with different cotton contents On the effect of vertical motion of roll system upon dynamic behavior and stability of rolling mill A simple method for solving damped Duffing oscillators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1