Navid Monshi Tousi, Josep M. Bergadà, Fernando Mellibovsky
{"title":"Effects of turbulence boundary conditions on Spalart-Allmaras RANS simulations for active flow control applications","authors":"Navid Monshi Tousi, Josep M. Bergadà, Fernando Mellibovsky","doi":"10.1007/s11012-024-01904-0","DOIUrl":null,"url":null,"abstract":"<div><p>We assess the suitability of Reynolds-Averaged Navier–Stokes (RANS) simulation using the Spalart-Allmaras (SA) turbulence model as a closure in analysing the performance of fluidic Active Flow Control (AFC) applications. In particular, we focus on the optimal set of actuation parameters found by Tousi et al. (Appl Math Model, 2021) and Tousi et al. (Aerospace Sci Technol 127:107679, 2022) for a SD7003 airfoil at a Reynolds number <span>\\(Re=6\\times 10^4\\)</span> and post-stall angle of attack <span>\\(\\alpha =14^\\circ\\)</span> fitted with a Synthetic Jet Actuator (SJA). The Large Eddy Simulation (LES) presented in that work is taken as the reference to identify the best choice of boundary conditions for the turbulence field <span>\\(\\tilde{\\nu }\\)</span> at both domain inlet and jet orifice in two-dimensional SA-RANS computations. Although SA-RANS is far less accurate than LES, our findings show that it can still predict macroscopic aggregates such as lift and drag coefficients quite satisfactorily and at a much lower computational cost, provided that turbulence levels of the actuator jet are set to a realistic value. An adequate value of <span>\\(\\tilde{\\nu }\\)</span> is instrumental in capturing the correct flow behaviour of the reattached boundary layers for close-to-optimal actuated cases. This validates the use of RANS-SA as a reliable and cost-effective simulation method for the preliminary optimisation of SJA parameters in AFC applications, provided that thorough sensitivity analysis on turbulence-related boundary conditions is performed. Given the strong sensitivity of flow detachment on the laminar or turbulent nature of boundary layers, our results suggest that such analyses are particularly indispensable for vastly separated flow scenarios in general, notably for bluff bodies at moderate transcritical Reynolds numbers.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 12","pages":"2283 - 2294"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01904-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01904-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We assess the suitability of Reynolds-Averaged Navier–Stokes (RANS) simulation using the Spalart-Allmaras (SA) turbulence model as a closure in analysing the performance of fluidic Active Flow Control (AFC) applications. In particular, we focus on the optimal set of actuation parameters found by Tousi et al. (Appl Math Model, 2021) and Tousi et al. (Aerospace Sci Technol 127:107679, 2022) for a SD7003 airfoil at a Reynolds number \(Re=6\times 10^4\) and post-stall angle of attack \(\alpha =14^\circ\) fitted with a Synthetic Jet Actuator (SJA). The Large Eddy Simulation (LES) presented in that work is taken as the reference to identify the best choice of boundary conditions for the turbulence field \(\tilde{\nu }\) at both domain inlet and jet orifice in two-dimensional SA-RANS computations. Although SA-RANS is far less accurate than LES, our findings show that it can still predict macroscopic aggregates such as lift and drag coefficients quite satisfactorily and at a much lower computational cost, provided that turbulence levels of the actuator jet are set to a realistic value. An adequate value of \(\tilde{\nu }\) is instrumental in capturing the correct flow behaviour of the reattached boundary layers for close-to-optimal actuated cases. This validates the use of RANS-SA as a reliable and cost-effective simulation method for the preliminary optimisation of SJA parameters in AFC applications, provided that thorough sensitivity analysis on turbulence-related boundary conditions is performed. Given the strong sensitivity of flow detachment on the laminar or turbulent nature of boundary layers, our results suggest that such analyses are particularly indispensable for vastly separated flow scenarios in general, notably for bluff bodies at moderate transcritical Reynolds numbers.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.