Trans-nuclei CRISPR/Cas9: safe approach for genome editing in the edible mushroom excluding foreign DNA sequences

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2024-12-30 DOI:10.1007/s00253-024-13367-0
Daishiro Koshi, Junko Sugano, Fuga Yamasaki, Moriyuki Kawauchi, Takehito Nakazawa, Minji Oh, Yoichi Honda
{"title":"Trans-nuclei CRISPR/Cas9: safe approach for genome editing in the edible mushroom excluding foreign DNA sequences","authors":"Daishiro Koshi,&nbsp;Junko Sugano,&nbsp;Fuga Yamasaki,&nbsp;Moriyuki Kawauchi,&nbsp;Takehito Nakazawa,&nbsp;Minji Oh,&nbsp;Yoichi Honda","doi":"10.1007/s00253-024-13367-0","DOIUrl":null,"url":null,"abstract":"<p>Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted genome editing has been applied to several major edible agaricomycetes, enabling efficient gene targeting. This method is promising for rapid and efficient breeding to isolate high-value cultivars and overcome cultivation challenges. However, the integration of foreign DNA fragments during this process raises concerns regarding genetically modified organisms (GMOs) and their regulatory restrictions. In this study, we developed a foreign-DNA-free genome editing method in <i>Pleurotus ostreatus</i> by transferring the Cas9/guide RNA (gRNA) complex between nuclei in the dikaryotic state. We isolated a donor monokaryotic <i>P. ostreatus</i> strain expressing Cas9 and gRNA targeting <i>pyrG</i> by introducing a recombinant plasmid, which exhibited uracil auxotrophy and 5-fluoroorotic acid (5-FOA) resistance. This strain was then crossed with a <i>pyrG</i><sup>+</sup> recipient monokaryon, resulting in dikaryotic strains exhibiting 5-FOA resistance after mycelial growth. When these strains were de-dikaryonized into monokaryons through protoplasting, we obtained monokaryotic isolates harboring the recipient nucleus with small indels at the <i>pyrG</i> target site. Importantly, these isolates were confirmed to be free of foreign DNA through genomic PCR, Southern blotting, and whole-genome resequencing analyses. This is the first report of an efficient genome editing protocol in agaricomycetes that ensures no integration of exogenous DNA. This approach is expected to be applicable to other fungi with a dikaryotic life cycle, opening new possibilities for molecular breeding without the concerns associated with GMOs.</p><p>• <i>Successful genome editing via CRISPR/Cas9 trans-nuclei manner in P. ostreatus</i>.</p><p>• <i>Recipient monokaryons from gene-edited dikaryons showed no exogenous DNA sequences</i>.</p><p>• <i>Efficient genome editing protocol for safer molecular breeding in mushroom fungus</i>.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-024-13367-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-024-13367-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted genome editing has been applied to several major edible agaricomycetes, enabling efficient gene targeting. This method is promising for rapid and efficient breeding to isolate high-value cultivars and overcome cultivation challenges. However, the integration of foreign DNA fragments during this process raises concerns regarding genetically modified organisms (GMOs) and their regulatory restrictions. In this study, we developed a foreign-DNA-free genome editing method in Pleurotus ostreatus by transferring the Cas9/guide RNA (gRNA) complex between nuclei in the dikaryotic state. We isolated a donor monokaryotic P. ostreatus strain expressing Cas9 and gRNA targeting pyrG by introducing a recombinant plasmid, which exhibited uracil auxotrophy and 5-fluoroorotic acid (5-FOA) resistance. This strain was then crossed with a pyrG+ recipient monokaryon, resulting in dikaryotic strains exhibiting 5-FOA resistance after mycelial growth. When these strains were de-dikaryonized into monokaryons through protoplasting, we obtained monokaryotic isolates harboring the recipient nucleus with small indels at the pyrG target site. Importantly, these isolates were confirmed to be free of foreign DNA through genomic PCR, Southern blotting, and whole-genome resequencing analyses. This is the first report of an efficient genome editing protocol in agaricomycetes that ensures no integration of exogenous DNA. This approach is expected to be applicable to other fungi with a dikaryotic life cycle, opening new possibilities for molecular breeding without the concerns associated with GMOs.

• Successful genome editing via CRISPR/Cas9 trans-nuclei manner in P. ostreatus.

Recipient monokaryons from gene-edited dikaryons showed no exogenous DNA sequences.

Efficient genome editing protocol for safer molecular breeding in mushroom fungus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
Precision tumor treatment utilizing bacteria: principles and future perspectives Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells Trans-nuclei CRISPR/Cas9: safe approach for genome editing in the edible mushroom excluding foreign DNA sequences Holistic monitoring of Campylobacter jejuni biofilms with NanoLuc bioluminescence Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1