Bianca Lascaris, Silke B Bodewes, Adam M Thorne, Marius C van den Heuvel, Robbert J de Haas, Maarten W N Nijsten, Vincent E de Meijer, Robert J Porte
{"title":"Perfusion Pressures and Weight Loss During Normothermic Machine Perfusion of Human Donor Livers.","authors":"Bianca Lascaris, Silke B Bodewes, Adam M Thorne, Marius C van den Heuvel, Robbert J de Haas, Maarten W N Nijsten, Vincent E de Meijer, Robert J Porte","doi":"10.1111/aor.14939","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Normothermic machine perfusion (NMP) is increasingly used to preserve and assess donor livers prior to transplantation. Due to its success, it is expected that more centers will start using this technology. However, NMP may also cause adverse effects.</p><p><strong>Methods: </strong>In this retrospective, observational study, we investigated the effect of NMP pressures on donor liver weight, post-transplant outcomes, and hepatic perfusion characteristics. A total of 36 livers were transplanted after NMP. NMP perfusion pressure settings were lowered from a median (IQR) of 47 mmHg (42-54) to 34 mmHg (30-39) for the hepatic artery (HA), and from 8 mmHg (7-10) to 7 mmHg (6-8) for the portal vein (PV) to diminish potential edema formation inside the liver.</p><p><strong>Results: </strong>This change appeared to lead to a reduction of liver weight after NMP (-22 g to -143 g, p = 0.02), without affecting the PV flow velocity (35.5 to 48.0 cm/s, p = 0.54), or hepatocellular injury markers during NMP (AST 1511-1148 U/L, p = 0.44; ALT 318-849 U/L, p = 0.35), and post-transplantation outcomes. Changes in liver weight correlated significantly with the applied PV pressure during NMP (r = 0.52, p < 0.01) and the HA flow (r = 0.38, p < 0.05).</p><p><strong>Conclusion: </strong>NMP can lead to a reduction in liver weight, which might be masked by edema when high perfusion pressures are used. We encourage applying the lowest perfusion pressures possible to reach adequate flows and oxygen supply during liver NMP.</p>","PeriodicalId":8450,"journal":{"name":"Artificial organs","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/aor.14939","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Normothermic machine perfusion (NMP) is increasingly used to preserve and assess donor livers prior to transplantation. Due to its success, it is expected that more centers will start using this technology. However, NMP may also cause adverse effects.
Methods: In this retrospective, observational study, we investigated the effect of NMP pressures on donor liver weight, post-transplant outcomes, and hepatic perfusion characteristics. A total of 36 livers were transplanted after NMP. NMP perfusion pressure settings were lowered from a median (IQR) of 47 mmHg (42-54) to 34 mmHg (30-39) for the hepatic artery (HA), and from 8 mmHg (7-10) to 7 mmHg (6-8) for the portal vein (PV) to diminish potential edema formation inside the liver.
Results: This change appeared to lead to a reduction of liver weight after NMP (-22 g to -143 g, p = 0.02), without affecting the PV flow velocity (35.5 to 48.0 cm/s, p = 0.54), or hepatocellular injury markers during NMP (AST 1511-1148 U/L, p = 0.44; ALT 318-849 U/L, p = 0.35), and post-transplantation outcomes. Changes in liver weight correlated significantly with the applied PV pressure during NMP (r = 0.52, p < 0.01) and the HA flow (r = 0.38, p < 0.05).
Conclusion: NMP can lead to a reduction in liver weight, which might be masked by edema when high perfusion pressures are used. We encourage applying the lowest perfusion pressures possible to reach adequate flows and oxygen supply during liver NMP.
期刊介绍:
Artificial Organs is the official peer reviewed journal of The International Federation for Artificial Organs (Members of the Federation are: The American Society for Artificial Internal Organs, The European Society for Artificial Organs, and The Japanese Society for Artificial Organs), The International Faculty for Artificial Organs, the International Society for Rotary Blood Pumps, The International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation. Artificial Organs publishes original research articles dealing with developments in artificial organs applications and treatment modalities and their clinical applications worldwide. Membership in the Societies listed above is not a prerequisite for publication. Articles are published without charge to the author except for color figures and excess page charges as noted.