Collaborative machine learning-guided overall survival prediction of oral squamous cell carcinoma.

IF 1.2 4区 医学 Q3 OTORHINOLARYNGOLOGY Acta Oto-Laryngologica Pub Date : 2024-12-31 DOI:10.1080/00016489.2024.2437012
Rasheed Omobolaji Alabi, Mohammed Elmusrati, Ilmo Leivo, Alhadi Almangush, Antti A Mäkitie
{"title":"Collaborative machine learning-guided overall survival prediction of oral squamous cell carcinoma.","authors":"Rasheed Omobolaji Alabi, Mohammed Elmusrati, Ilmo Leivo, Alhadi Almangush, Antti A Mäkitie","doi":"10.1080/00016489.2024.2437012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is a lack of prognosticators of overall survival (OS) for Oral Squamous Cell Carcinoma (OSCC).</p><p><strong>Objectives: </strong>We examined collaborative machine learning (cML) in estimating the OS of OSCC patients. The prognostic significance of the clinicopathological parameters was examined.</p><p><strong>Methodology: </strong>Altogether, 9439 OSCC patients were extracted from the Surveillance, Epidemiology, and End Results database (US). Five ML models - voting ensemble, stacked ensemble, extreme gradient boosting, light boosting, and logistic regression were used to predict OS. Three of these ML algorithms were combined to form a cluster of cML models. The performance of the cML was compared with the best performing individual ML algorithm following model training.</p><p><strong>Results: </strong>The performance accuracy of the voting ensemble, stacked ensemble, extreme gradient boosting, light boosting, and logistic regression models was 70.2%, 69.9%, 69.1%, 69.4%, and 69.5% respectively, following model training. When the voting ensemble model was compared with cML using temporal validation, the cML showed a comparable performance accuracy. The most significant prognostic factors were age of the patient at diagnosis, T stage, tumor grade, marital status, gender, primary site, surgery, N stage, radiotherapy, ethnicity, chemotherapy, and M stage.</p><p><strong>Conclusions: </strong>cML appears to give reliability to the final prediction and thereby may mark a paradigm shift from model individualism to a more cooperative paradigm. This approach may aid in determining an enhanced individualized treatment for OSCC patients.</p>","PeriodicalId":6880,"journal":{"name":"Acta Oto-Laryngologica","volume":" ","pages":"1-8"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oto-Laryngologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00016489.2024.2437012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: There is a lack of prognosticators of overall survival (OS) for Oral Squamous Cell Carcinoma (OSCC).

Objectives: We examined collaborative machine learning (cML) in estimating the OS of OSCC patients. The prognostic significance of the clinicopathological parameters was examined.

Methodology: Altogether, 9439 OSCC patients were extracted from the Surveillance, Epidemiology, and End Results database (US). Five ML models - voting ensemble, stacked ensemble, extreme gradient boosting, light boosting, and logistic regression were used to predict OS. Three of these ML algorithms were combined to form a cluster of cML models. The performance of the cML was compared with the best performing individual ML algorithm following model training.

Results: The performance accuracy of the voting ensemble, stacked ensemble, extreme gradient boosting, light boosting, and logistic regression models was 70.2%, 69.9%, 69.1%, 69.4%, and 69.5% respectively, following model training. When the voting ensemble model was compared with cML using temporal validation, the cML showed a comparable performance accuracy. The most significant prognostic factors were age of the patient at diagnosis, T stage, tumor grade, marital status, gender, primary site, surgery, N stage, radiotherapy, ethnicity, chemotherapy, and M stage.

Conclusions: cML appears to give reliability to the final prediction and thereby may mark a paradigm shift from model individualism to a more cooperative paradigm. This approach may aid in determining an enhanced individualized treatment for OSCC patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以机器学习为指导的口腔鳞状细胞癌总体生存率协作预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Oto-Laryngologica
Acta Oto-Laryngologica 医学-耳鼻喉科学
CiteScore
2.50
自引率
0.00%
发文量
99
审稿时长
3-6 weeks
期刊介绍: Acta Oto-Laryngologica is a truly international journal for translational otolaryngology and head- and neck surgery. The journal presents cutting-edge papers on clinical practice, clinical research and basic sciences. Acta also bridges the gap between clinical and basic research.
期刊最新文献
Endoscopic butterfly cartilage myringoplasty: our long term results. Therapeutic efficacy of canalith reposition maneuver according to the determination method of lesion side in patients with persistent geotropic direction-changing positional nystagmus. Incidence of adult tonsillectomy for hypertrophic indications in Southwest Finland. Deep learning multi-classification of middle ear diseases using synthetic tympanic images. Did our cochlear implant program make any difference in the lives of our patients? Achievements of 30 patients with long term follow-up averaging 20 years after cochlear implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1