Aalto Gear Fault datasets for deep-learning based diagnosis.

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-12-02 eCollection Date: 2024-12-01 DOI:10.1016/j.dib.2024.111171
Zacharias Dahl, Aleksanteri Hämäläinen, Aku Karhinen, Jesse Miettinen, Andre Böhme, Samuel Lillqvist, Sampo Haikonen, Raine Viitala
{"title":"Aalto Gear Fault datasets for deep-learning based diagnosis.","authors":"Zacharias Dahl, Aleksanteri Hämäläinen, Aku Karhinen, Jesse Miettinen, Andre Böhme, Samuel Lillqvist, Sampo Haikonen, Raine Viitala","doi":"10.1016/j.dib.2024.111171","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate system health state prediction through deep learning requires extensive and varied data. However, real-world data scarcity poses a challenge for developing robust fault diagnosis models. This study introduces two extensive datasets, Aalto Shim Dataset and Aalto Gear Fault Dataset, collected under controlled laboratory conditions, aimed at advancing deep learning-based fault diagnosis. The datasets encompass a wide range of gear faults, including synthetic and realistic failure modes, replicated on a downsized azimuth thruster testbench equipped with multiple sensors. The data features various fault types and severities under different operating conditions. The comprehensive data collected, along with the methodologies for creating synthetic faults and replicating common gear failures, provide valuable resources for developing and testing intelligent fault diagnosis models, enhancing their generalization and robustness across diverse scenarios.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111171"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate system health state prediction through deep learning requires extensive and varied data. However, real-world data scarcity poses a challenge for developing robust fault diagnosis models. This study introduces two extensive datasets, Aalto Shim Dataset and Aalto Gear Fault Dataset, collected under controlled laboratory conditions, aimed at advancing deep learning-based fault diagnosis. The datasets encompass a wide range of gear faults, including synthetic and realistic failure modes, replicated on a downsized azimuth thruster testbench equipped with multiple sensors. The data features various fault types and severities under different operating conditions. The comprehensive data collected, along with the methodologies for creating synthetic faults and replicating common gear failures, provide valuable resources for developing and testing intelligent fault diagnosis models, enhancing their generalization and robustness across diverse scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于深度学习诊断的阿尔托齿轮故障数据集。
通过深度学习进行准确的系统健康状态预测需要广泛而多样的数据。然而,现实世界的数据稀缺性对开发鲁棒故障诊断模型提出了挑战。本研究引入了两个广泛的数据集,Aalto Shim数据集和Aalto Gear故障数据集,在受控的实验室条件下收集,旨在推进基于深度学习的故障诊断。数据集涵盖了广泛的齿轮故障,包括合成和实际故障模式,并在配备多个传感器的小型化方位推进器试验台上进行了复制。这些数据在不同的运行条件下具有不同的故障类型和严重程度。收集到的综合数据,以及创建综合故障和复制常见齿轮故障的方法,为开发和测试智能故障诊断模型提供了宝贵的资源,增强了它们在不同场景下的泛化和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
A global gross primary productivity of sunlit and shaded canopies dataset from 2002 to 2020 via embedding random forest into two-leaf light use efficiency model. Dataset of keywords used by European political parties on Facebook. IDDMSLD: An image dataset for detecting Malabar spinach leaf diseases. The media framing dataset: Analyzing news narratives in Mexico and Colombia. Transcriptome datasets of salt-stressed tomato plants treated with zinc oxide nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1