Catalytic oxidation upcycling of polyethylene terephthalate to commodity carboxylic acids.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-12-30 DOI:10.1038/s41467-024-54822-w
Qinghai Chen, Hao Yan, Kai Zhao, Shuai Wang, Dongrui Zhang, Yaqian Li, Rong Fan, Jie Li, Xiaobo Chen, Xin Zhou, Yibin Liu, Xiang Feng, De Chen, Chaohe Yang
{"title":"Catalytic oxidation upcycling of polyethylene terephthalate to commodity carboxylic acids.","authors":"Qinghai Chen, Hao Yan, Kai Zhao, Shuai Wang, Dongrui Zhang, Yaqian Li, Rong Fan, Jie Li, Xiaobo Chen, Xin Zhou, Yibin Liu, Xiang Feng, De Chen, Chaohe Yang","doi":"10.1038/s41467-024-54822-w","DOIUrl":null,"url":null,"abstract":"<p><p>Catalytic upcycling of polyethylene terephthalate (PET) into high-value oxygenated products is a fascinating process, yet it remains challenging. Here, we present a one-step tandem strategy to realize the thermal catalytic oxidation upcycling of PET to terephthalic acid (TPA) and high-value glycolic acid (GA) instead of ethylene glycol (EG). By using the Au/NiO with rich oxygen vacancies as catalyst, we successfully accelerate the hydrolysis of PET, accompanied by obtaining 99% TPA yield and 87.6% GA yield. The results reveal that the oxygen vacancies in NiO (NiO-O<sub>v</sub>) support tend to adsorb hydrolysis product TPA, preferentially ensuring the strong adsorption of EG at the Au-NiO interface. Moreover, during the EG oxidation process, the Au-NiO interface, composed of two types of structures, quasi \"AuNi alloy\" and NiO-O<sub>v</sub>, simultaneously promote the C-H bond activation, where Ni in \"AuNi alloy\" exhibits an oxytropism effect to anchor the C = O bond of the intermediate, while the residual O in NiO-O<sub>v</sub> pillages the H in the C-H bond. Such Au/NiO catalyst is further extended to promote the thermal catalytic oxidation upcycling of other polyethylene glycol esters to GA with excellent catalytic performance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"10732"},"PeriodicalIF":14.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54822-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic upcycling of polyethylene terephthalate (PET) into high-value oxygenated products is a fascinating process, yet it remains challenging. Here, we present a one-step tandem strategy to realize the thermal catalytic oxidation upcycling of PET to terephthalic acid (TPA) and high-value glycolic acid (GA) instead of ethylene glycol (EG). By using the Au/NiO with rich oxygen vacancies as catalyst, we successfully accelerate the hydrolysis of PET, accompanied by obtaining 99% TPA yield and 87.6% GA yield. The results reveal that the oxygen vacancies in NiO (NiO-Ov) support tend to adsorb hydrolysis product TPA, preferentially ensuring the strong adsorption of EG at the Au-NiO interface. Moreover, during the EG oxidation process, the Au-NiO interface, composed of two types of structures, quasi "AuNi alloy" and NiO-Ov, simultaneously promote the C-H bond activation, where Ni in "AuNi alloy" exhibits an oxytropism effect to anchor the C = O bond of the intermediate, while the residual O in NiO-Ov pillages the H in the C-H bond. Such Au/NiO catalyst is further extended to promote the thermal catalytic oxidation upcycling of other polyethylene glycol esters to GA with excellent catalytic performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将聚对苯二甲酸乙二醇酯催化氧化为商品羧酸的升级再循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Activity of the mammalian DNA transposon piggyBat from Myotis lucifugus is restricted by its own transposon ends NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression Siah2 antagonism of Pard3/JamC modulates Ntn1-Dcc signaling to regulate cerebellar granule neuron germinal zone exit Safety and immunogenicity of an optimized self-replicating RNA platform for low dose or single dose vaccine applications: a randomized, open label Phase I study in healthy volunteers Author Correction: Back flux during anaerobic oxidation of butane support archaea-mediated alkanogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1