Zishou Hu, Xueqing Tang, Yuan-Qiu-Qiang Yi, Shuhong Nie, Xiaolian Chen, Wenya Xu, Chenchao Huang, Xinju Mu, Zhongsheng Ma, Pengyu Tang, Xinzhou Wu, Wenming Su, Christine K Luscombe
{"title":"A general strategy to achieve see-through devices through the micro-structuring of colored functional materials.","authors":"Zishou Hu, Xueqing Tang, Yuan-Qiu-Qiang Yi, Shuhong Nie, Xiaolian Chen, Wenya Xu, Chenchao Huang, Xinju Mu, Zhongsheng Ma, Pengyu Tang, Xinzhou Wu, Wenming Su, Christine K Luscombe","doi":"10.1038/s41467-024-55133-w","DOIUrl":null,"url":null,"abstract":"<p><p>Irrespective of the specific see-through device, obtaining optimal transparency remains the primary goal. In this work, we introduce a general strategy to enhance the transparency of various see-through devices. We achieve this by structuring the colored functional materials into imperceptible three-dimensional mesh lines, addressing a common challenge in multi-layer structures where each layer causes a reduction in transparency due to their color or opacity. To overcome this limitation, we selectively integrate functional materials into micron-wide groove structures transforming functional layers to functional meshes. Regardless of the initial color of the functional material, the resulting functional mesh can exhibit a high transmittance of 88% (vs. air) under any operating state while maintaining its intended function within the device. We apply this strategy to fabricate proof-of-concept of devices such as electrochromic devices, supercapacitors, and zinc batteries, all of which exhibit remarkable overall transparency when compared to the multi-layer device.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"10836"},"PeriodicalIF":14.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685429/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55133-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Irrespective of the specific see-through device, obtaining optimal transparency remains the primary goal. In this work, we introduce a general strategy to enhance the transparency of various see-through devices. We achieve this by structuring the colored functional materials into imperceptible three-dimensional mesh lines, addressing a common challenge in multi-layer structures where each layer causes a reduction in transparency due to their color or opacity. To overcome this limitation, we selectively integrate functional materials into micron-wide groove structures transforming functional layers to functional meshes. Regardless of the initial color of the functional material, the resulting functional mesh can exhibit a high transmittance of 88% (vs. air) under any operating state while maintaining its intended function within the device. We apply this strategy to fabricate proof-of-concept of devices such as electrochromic devices, supercapacitors, and zinc batteries, all of which exhibit remarkable overall transparency when compared to the multi-layer device.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.