Electrochemically synthesized H2O2 at industrial-level current densities enabled by in situ fabricated few-layer boron nanosheets.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-12-30 DOI:10.1038/s41467-024-55071-7
Yuhan Wu, Yuying Zhao, Qixin Yuan, Hao Sun, Ao Wang, Kang Sun, Geoffrey I N Waterhouse, Ziyun Wang, Jingjie Wu, Jianchun Jiang, Mengmeng Fan
{"title":"Electrochemically synthesized H<sub>2</sub>O<sub>2</sub> at industrial-level current densities enabled by in situ fabricated few-layer boron nanosheets.","authors":"Yuhan Wu, Yuying Zhao, Qixin Yuan, Hao Sun, Ao Wang, Kang Sun, Geoffrey I N Waterhouse, Ziyun Wang, Jingjie Wu, Jianchun Jiang, Mengmeng Fan","doi":"10.1038/s41467-024-55071-7","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon nanomaterials show outstanding promise as electrocatalysts for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) synthesis via the two-electron oxygen reduction reaction. However, carbon-based electrocatalysts that are capable of generating H<sub>2</sub>O<sub>2</sub> at industrial-level current densities (>300 mA cm<sup>-2</sup>) with high selectivity and long-term stability remain to be discovered. Herein, few-layer boron nanosheets are in-situ introduced into a porous carbon matrix, creating a metal-free electrocatalyst (B<sub>n</sub>-C) with H<sub>2</sub>O<sub>2</sub> production rates of industrial relevance in neutral or alkaline media. B<sub>n</sub>-C maintained > 95% Faradaic efficiency during a 140-hour test at 300 mA cm<sup>-2</sup> and 0.1 V vs. RHE, and delivered a mass activity of 25.1 mol g<sub>catalyst</sub><sup>-1</sup> h<sup>-1</sup> in 1.0 M Na<sub>2</sub>SO<sub>4</sub> using a flow cell. Theoretical simulations and experimental studies demonstrate that the superior catalytic performance originates from B atoms with adsorbed O atoms in the boron nanosheets. B<sub>n</sub>-C outperforms all metal-based and metal-free carbon catalysts reported to date for H<sub>2</sub>O<sub>2</sub> synthesis at industrial-level current densities.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"10843"},"PeriodicalIF":14.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55071-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanomaterials show outstanding promise as electrocatalysts for hydrogen peroxide (H2O2) synthesis via the two-electron oxygen reduction reaction. However, carbon-based electrocatalysts that are capable of generating H2O2 at industrial-level current densities (>300 mA cm-2) with high selectivity and long-term stability remain to be discovered. Herein, few-layer boron nanosheets are in-situ introduced into a porous carbon matrix, creating a metal-free electrocatalyst (Bn-C) with H2O2 production rates of industrial relevance in neutral or alkaline media. Bn-C maintained > 95% Faradaic efficiency during a 140-hour test at 300 mA cm-2 and 0.1 V vs. RHE, and delivered a mass activity of 25.1 mol gcatalyst-1 h-1 in 1.0 M Na2SO4 using a flow cell. Theoretical simulations and experimental studies demonstrate that the superior catalytic performance originates from B atoms with adsorbed O atoms in the boron nanosheets. Bn-C outperforms all metal-based and metal-free carbon catalysts reported to date for H2O2 synthesis at industrial-level current densities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用原位制造的几层硼纳米片,在工业级电流密度下电化学合成 H2O2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
阿拉丁 Commercial Boron powder
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling Potential plant extinctions with the loss of the Pleistocene mammoth steppe The small GTPase MRAS is a broken switch Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning Modeling bacterial interactions uncovers the importance of outliers in the coastal lignin-degrading consortium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1