Identification of serum biomarkers for cystic echinococcosis in sheep through untargeted metabolomic analysis using LC-MS/MS technology.

IF 3 2区 医学 Q1 PARASITOLOGY Parasites & Vectors Pub Date : 2024-12-30 DOI:10.1186/s13071-024-06599-6
Xiao-Xia Wu, Wan-Li Ban, Li-Jiang Wu, Wen-Jing Qi, Mehdi Borhani, Xiao-Ying He, Xiao-Lei Liu, Ming-Yuan Liu, Jing Ding
{"title":"Identification of serum biomarkers for cystic echinococcosis in sheep through untargeted metabolomic analysis using LC-MS/MS technology.","authors":"Xiao-Xia Wu, Wan-Li Ban, Li-Jiang Wu, Wen-Jing Qi, Mehdi Borhani, Xiao-Ying He, Xiao-Lei Liu, Ming-Yuan Liu, Jing Ding","doi":"10.1186/s13071-024-06599-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Echinococcosis is a zoonotic disease caused by an Echinococcus tapeworm infection. While diagnostic methods for humans often rely on ultrasound imaging and immunodiagnostic techniques, diagnosis in intermediate hosts typically has no widely used diagnostic markers, hampering disease control efforts.</p><p><strong>Methods: </strong>The differences in serum metabolites of sheep infected with Echinococcus granulosus and a control group were analyzed using ultrahigh-performance liquid chromatography (UHPLC) separation with tandem mass spectrometry (MS/MS) detection. This provided a basis for the early diagnosis and pathogenetic study of cystic echinococcosis (CE) in intermediate hosts at the metabolomics level. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) were used to analyze different metabolites in the serum of the two groups. The differentially abundant metabolites were entered into the MetaboAnalyst 5.0 online analysis website for processing, and the top-15-ranked metabolic pathways were set to produce bubble plots and differential abundance score plots, with a significant difference of P < 0.05 and a false discovery rate (FDR) < 0.1 as the screening conditions.</p><p><strong>Results: </strong>Data analyses of serum samples from both groups identified a total of 1905 significantly different metabolites, where 841 metabolites were upregulated and 1064 metabolites were downregulated. Twelve metabolites were significantly upregulated and 21 metabolites were significantly downregulated in the experimental group. Then, the 1,7-dihydroxyxanthone, 2-methylbutyrylglycine, 3,3-dimethylglutaric acid, 5,12-dihydroxy-6,8,10,14,17-eicosapentaenoic acid, 9-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid, and trimethylamine N-oxide 6 metabolites were selected as diagnostically valuable candidate biomarkers (area under the curve [AUC] > 0.7). These differential metabolites are involved in various metabolic pathways, including amino acid metabolites (arginine, L-isoleucine, L-valine) and fatty acid metabolism (fenugreek, arachidonic acid, linolenic acid). Compared with the control group, sheep in the CE group had increased serum levels of fenugreek acid, while all other metabolites such as glycine showed significantly reduced serum levels (P < 0.01).</p><p><strong>Conclusions: </strong>Through non-targeted metabolomic analysis of the serum of CE-infected sheep, differential metabolites closely related to amino acid metabolism and the fatty acid metabolism pathway were identified. These differentially abundant metabolites can serve as biomarkers for diagnosing CE infection in intermediate sheep hosts.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"17 1","pages":"547"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06599-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Echinococcosis is a zoonotic disease caused by an Echinococcus tapeworm infection. While diagnostic methods for humans often rely on ultrasound imaging and immunodiagnostic techniques, diagnosis in intermediate hosts typically has no widely used diagnostic markers, hampering disease control efforts.

Methods: The differences in serum metabolites of sheep infected with Echinococcus granulosus and a control group were analyzed using ultrahigh-performance liquid chromatography (UHPLC) separation with tandem mass spectrometry (MS/MS) detection. This provided a basis for the early diagnosis and pathogenetic study of cystic echinococcosis (CE) in intermediate hosts at the metabolomics level. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) were used to analyze different metabolites in the serum of the two groups. The differentially abundant metabolites were entered into the MetaboAnalyst 5.0 online analysis website for processing, and the top-15-ranked metabolic pathways were set to produce bubble plots and differential abundance score plots, with a significant difference of P < 0.05 and a false discovery rate (FDR) < 0.1 as the screening conditions.

Results: Data analyses of serum samples from both groups identified a total of 1905 significantly different metabolites, where 841 metabolites were upregulated and 1064 metabolites were downregulated. Twelve metabolites were significantly upregulated and 21 metabolites were significantly downregulated in the experimental group. Then, the 1,7-dihydroxyxanthone, 2-methylbutyrylglycine, 3,3-dimethylglutaric acid, 5,12-dihydroxy-6,8,10,14,17-eicosapentaenoic acid, 9-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid, and trimethylamine N-oxide 6 metabolites were selected as diagnostically valuable candidate biomarkers (area under the curve [AUC] > 0.7). These differential metabolites are involved in various metabolic pathways, including amino acid metabolites (arginine, L-isoleucine, L-valine) and fatty acid metabolism (fenugreek, arachidonic acid, linolenic acid). Compared with the control group, sheep in the CE group had increased serum levels of fenugreek acid, while all other metabolites such as glycine showed significantly reduced serum levels (P < 0.01).

Conclusions: Through non-targeted metabolomic analysis of the serum of CE-infected sheep, differential metabolites closely related to amino acid metabolism and the fatty acid metabolism pathway were identified. These differentially abundant metabolites can serve as biomarkers for diagnosing CE infection in intermediate sheep hosts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Parasites & Vectors
Parasites & Vectors 医学-寄生虫学
CiteScore
6.30
自引率
9.40%
发文量
433
审稿时长
1.4 months
期刊介绍: Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish. Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.
期刊最新文献
Identification of serum biomarkers for cystic echinococcosis in sheep through untargeted metabolomic analysis using LC-MS/MS technology. Insights into the biology and insecticide susceptibility of the secondary malaria vector Anopheles parensis in an area with long-term use of insecticide-treated nets in northwestern Tanzania. The evolutionary history of Plasmodium falciparum from mitochondrial and apicoplast genomes of China-Myanmar border isolates. Transcriptional induction of the IMD signaling pathway and associated antibacterial activity in the digestive tract of cat fleas (Ctenocephalides felis). Comparison of ELISA and IFAT for Leishmania infantum by European and Middle Eastern diagnostic laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1