Three-component diels-alder reaction through palladium carbene migratory insertion enabled dearomative C(sp3)-H bond activation.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-12-30 DOI:10.1038/s41467-024-55190-1
Yiman Mi, Shuoyue Liu, Lingfei Hu, Yihua Wang, Renhui Luo, Yinghua Yu, Zhiyang Zhang, Shan Yuan, Gang Lu, Xueliang Huang
{"title":"Three-component diels-alder reaction through palladium carbene migratory insertion enabled dearomative C(sp<sup>3</sup>)-H bond activation.","authors":"Yiman Mi, Shuoyue Liu, Lingfei Hu, Yihua Wang, Renhui Luo, Yinghua Yu, Zhiyang Zhang, Shan Yuan, Gang Lu, Xueliang Huang","doi":"10.1038/s41467-024-55190-1","DOIUrl":null,"url":null,"abstract":"<p><p>Owning to the versatile nature in participation of Diels-Alder (D-A) reactions, the development of efficient approaches to generate active ortho-quinodimethanes (o-QDMs) has gained much attention. However, a catalytic method involving coupling of two readily accessible components to construct o-QDMs is lacking. Herein, we describe a palladium carbene migratory insertion enabled dearomative C(sp<sup>3</sup>)-H activation to form active o-QDM species through the cross-coupling of N-tosylhydrazones with aryl halides. The in situ generated o-QDM intermediates were trapped efficiently by 3-nitroindoles and N-sulfonylaldimines to provide dihydroindolo[2,3-b]carbazole derivatives and indole alkaloids modularly. To our knowledge, this reaction represents a rare example on three-component D-A cycloaddition through in situ generation of conjugated dienes by the coupling two readily available materials. We anticipate such a reaction mode could find broad application on diversity oriented six-membered ring construction. Deuterium labeling experiments and density functional theory calculations support a pathway through reversible C(sp<sup>3</sup>)-H activation to generate heterocyclic o-QDMs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"10844"},"PeriodicalIF":14.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55190-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Owning to the versatile nature in participation of Diels-Alder (D-A) reactions, the development of efficient approaches to generate active ortho-quinodimethanes (o-QDMs) has gained much attention. However, a catalytic method involving coupling of two readily accessible components to construct o-QDMs is lacking. Herein, we describe a palladium carbene migratory insertion enabled dearomative C(sp3)-H activation to form active o-QDM species through the cross-coupling of N-tosylhydrazones with aryl halides. The in situ generated o-QDM intermediates were trapped efficiently by 3-nitroindoles and N-sulfonylaldimines to provide dihydroindolo[2,3-b]carbazole derivatives and indole alkaloids modularly. To our knowledge, this reaction represents a rare example on three-component D-A cycloaddition through in situ generation of conjugated dienes by the coupling two readily available materials. We anticipate such a reaction mode could find broad application on diversity oriented six-membered ring construction. Deuterium labeling experiments and density functional theory calculations support a pathway through reversible C(sp3)-H activation to generate heterocyclic o-QDMs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling Potential plant extinctions with the loss of the Pleistocene mammoth steppe The small GTPase MRAS is a broken switch Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning Modeling bacterial interactions uncovers the importance of outliers in the coastal lignin-degrading consortium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1