{"title":"The evolving concepts of KS-WNK1 effect on NCC activity.","authors":"María Chávez-Canales, Gerardo Gamba","doi":"10.1152/ajprenal.00272.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The field of the with-no-lysine kinases (WNKs) regulation of the thiazide-sensitive NaCl cotransporter (NCC) began at the start of the century with the discovery that mutations in two members of the family, WNK1 and WNK4, resulted in a condition known as familial hyperkalemic hypertension (FHHt). Since FHHt is the mirror image of Gitelman's syndrome that is caused by inactivating mutations of the SLC12A3 gene encoding NCC, it was expected that WNKs modulated NCC activity and that the increased function of the cotransporter is the pathophysiological mechanism of FFHt. This turned out to be the case. However, experiments over the first years generated unexpected observations that confused the field. Although most has been clarified, one issue still under a certain level of controversy is the role of an isoform of WNK1 that is only expressed in the kidney, almost entirely in the distal convoluted tubule, known as KS-WNK1. In this work, we present an overview of how the knowledge about the physiology of KS-WNK1 evolved over the years and propose explanations to understand its role in renal physiology.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F258-F269"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00272.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The field of the with-no-lysine kinases (WNKs) regulation of the thiazide-sensitive NaCl cotransporter (NCC) began at the start of the century with the discovery that mutations in two members of the family, WNK1 and WNK4, resulted in a condition known as familial hyperkalemic hypertension (FHHt). Since FHHt is the mirror image of Gitelman's syndrome that is caused by inactivating mutations of the SLC12A3 gene encoding NCC, it was expected that WNKs modulated NCC activity and that the increased function of the cotransporter is the pathophysiological mechanism of FFHt. This turned out to be the case. However, experiments over the first years generated unexpected observations that confused the field. Although most has been clarified, one issue still under a certain level of controversy is the role of an isoform of WNK1 that is only expressed in the kidney, almost entirely in the distal convoluted tubule, known as KS-WNK1. In this work, we present an overview of how the knowledge about the physiology of KS-WNK1 evolved over the years and propose explanations to understand its role in renal physiology.