A novel self-similarity cluster grouping approach for individual tree crown segmentation using multi-features from UAV-based LiDAR and multi-angle photogrammetry data

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-12-31 DOI:10.1016/j.rse.2024.114588
Lingting Lei, Guoqi Chai, Zongqi Yao, Yingbo Li, Xiang Jia, Xiaoli Zhang
{"title":"A novel self-similarity cluster grouping approach for individual tree crown segmentation using multi-features from UAV-based LiDAR and multi-angle photogrammetry data","authors":"Lingting Lei, Guoqi Chai, Zongqi Yao, Yingbo Li, Xiang Jia, Xiaoli Zhang","doi":"10.1016/j.rse.2024.114588","DOIUrl":null,"url":null,"abstract":"Automatic collection of tree-level crown information is essential for sustainable forest management and fine carbon stock estimation. UAV-based light detection and ranging (LiDAR) and UAV-based multi-angle photogrammetry (UMP) data depict the 3D structure of forests at a fine-grained level by generating detailed point clouds, making them potential alternatives to labor-intensive forest inventories. However, the accuracy of the individual tree crown segmentation algorithms that have been developed is unstable in forest stands with high terrain undulation and high canopy density, mainly due to the various crown sizes and interlocking crowns resulting in varying degrees of over- or under-segmentation. Here, we propose self-similarity cluster grouping (SCG) algorithm for individual tree crown segmentation that integrates multivariable calculus of crown surfaces and spectral-texture-color spatial information of crown. Firstly, according to the property that DSM and its multi-order gradient information can characterize the crown surface variation and concavity-convexity features, first- and second-order edge detection operators were used to preliminarily determine the crown patch edges in order to reduce under-segmentation. Then, we developed a self-similarity weight function controlled by the spectral, texture and color spatial information of the tree crown patches to increase the similarity difference between adjacent crown patches of the same tree and those of neighboring trees, and designed the strategy for cluster grouping crown patches to complete individual tree crown segmentation. The performance of the proposed SCG algorithm was verified in Mytilaria, Red oatchestnu, Chinese fir and Eucalyptus plots in subtropical forests of China using LiDAR and UMP data. The overall accuracy of F-score (<em>f</em>) was above 0.85 for crown segmentation, and the rRMSE for crown width, crown area and crown circumference extractions reached 0.13, 0.22 and 0.14, respectively. On this basis, we evaluated the effect of spatial resolution of DSM on the segmentation accuracy of SCG algorithm, and found that the crown segmentation accuracy was proportional to the spatial resolution. Compared to the normalized cut algorithm, marker-controlled watershed algorithm and threshold-based cloud point segmentation algorithm, the SCG algorithm improved the overall accuracy <em>f</em> of individual tree crown segmentation by 0.06, 0.13 and 0.05 for LiDAR and 0.06, 0.21 and 0.10 for UMP, respectively. Furthermore, the effectiveness and generalizability of the SCG algorithm was verified in other Mytilaria, Red oatchestnut, Chinese fir and Eucalyptus plots in subtropical forests and Larch and Chinese pine plots in temperate forests using UMP data. The crown segmentation accuracy was better than 0.82, and the crown width extraction accuracy was up to 89 %. Overall, our proposed SCG algorithm reduces the over- and under-segmentation in complex forest structures and provides technical support for accurate crown information extraction at both plot and forest stand levels.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"114 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114588","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic collection of tree-level crown information is essential for sustainable forest management and fine carbon stock estimation. UAV-based light detection and ranging (LiDAR) and UAV-based multi-angle photogrammetry (UMP) data depict the 3D structure of forests at a fine-grained level by generating detailed point clouds, making them potential alternatives to labor-intensive forest inventories. However, the accuracy of the individual tree crown segmentation algorithms that have been developed is unstable in forest stands with high terrain undulation and high canopy density, mainly due to the various crown sizes and interlocking crowns resulting in varying degrees of over- or under-segmentation. Here, we propose self-similarity cluster grouping (SCG) algorithm for individual tree crown segmentation that integrates multivariable calculus of crown surfaces and spectral-texture-color spatial information of crown. Firstly, according to the property that DSM and its multi-order gradient information can characterize the crown surface variation and concavity-convexity features, first- and second-order edge detection operators were used to preliminarily determine the crown patch edges in order to reduce under-segmentation. Then, we developed a self-similarity weight function controlled by the spectral, texture and color spatial information of the tree crown patches to increase the similarity difference between adjacent crown patches of the same tree and those of neighboring trees, and designed the strategy for cluster grouping crown patches to complete individual tree crown segmentation. The performance of the proposed SCG algorithm was verified in Mytilaria, Red oatchestnu, Chinese fir and Eucalyptus plots in subtropical forests of China using LiDAR and UMP data. The overall accuracy of F-score (f) was above 0.85 for crown segmentation, and the rRMSE for crown width, crown area and crown circumference extractions reached 0.13, 0.22 and 0.14, respectively. On this basis, we evaluated the effect of spatial resolution of DSM on the segmentation accuracy of SCG algorithm, and found that the crown segmentation accuracy was proportional to the spatial resolution. Compared to the normalized cut algorithm, marker-controlled watershed algorithm and threshold-based cloud point segmentation algorithm, the SCG algorithm improved the overall accuracy f of individual tree crown segmentation by 0.06, 0.13 and 0.05 for LiDAR and 0.06, 0.21 and 0.10 for UMP, respectively. Furthermore, the effectiveness and generalizability of the SCG algorithm was verified in other Mytilaria, Red oatchestnut, Chinese fir and Eucalyptus plots in subtropical forests and Larch and Chinese pine plots in temperate forests using UMP data. The crown segmentation accuracy was better than 0.82, and the crown width extraction accuracy was up to 89 %. Overall, our proposed SCG algorithm reduces the over- and under-segmentation in complex forest structures and provides technical support for accurate crown information extraction at both plot and forest stand levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于无人机的激光雷达和多角度摄影测量数据的多特征进行单个树冠分割的新型自相似性聚类方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Abiotic influences on continuous conifer forest structure across a subalpine watershed Can real-time NDVI observations better constrain SMAP soil moisture retrievals? Generation of robust 10-m Sentinel-2/3 synthetic aquatic reflectance bands over inland waters An interpretable attention-based deep learning method for landslide prediction based on multi-temporal InSAR time series: A case study of Xinpu landslide in the TGRA A long-term global Mollisols SOC content prediction framework: Integrating prior knowledge, geographical partitioning, and deep learning models with spatio-temporal validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1