CD154 blockade effectively controls antibody-mediated rejection in highly sensitized nonhuman primate kidney transplant recipients

IF 15.8 1区 医学 Q1 CELL BIOLOGY Science Translational Medicine Pub Date : 2025-01-01 DOI:10.1126/scitranslmed.adn8130
Imran J. Anwar, Isabel DeLaura, Joseph M. Ladowski, Davide Schilirò, Qimeng Gao, Miriam Manook, Janghoon Yoon, Rafaela Belloni, Angela Park, Daniel J. Schuster, Mingqing Song, Lin Lin, Alton B. Farris, Diogo Magnani, Kyha Williams, Jean Kwun, Stuart J. Knechtle
{"title":"CD154 blockade effectively controls antibody-mediated rejection in highly sensitized nonhuman primate kidney transplant recipients","authors":"Imran J. Anwar, Isabel DeLaura, Joseph M. Ladowski, Davide Schilirò, Qimeng Gao, Miriam Manook, Janghoon Yoon, Rafaela Belloni, Angela Park, Daniel J. Schuster, Mingqing Song, Lin Lin, Alton B. Farris, Diogo Magnani, Kyha Williams, Jean Kwun, Stuart J. Knechtle","doi":"10.1126/scitranslmed.adn8130","DOIUrl":null,"url":null,"abstract":"Current desensitization and maintenance immunosuppression regimens for kidney transplantation in sensitized individuals show limited ability to control the posttransplant humoral response, resulting in high rates of antibody-mediated rejection (ABMR) and graft failure. Here, we showed that anti-CD154 monoclonal antibody (mAb)–based immunosuppression more effectively controlled allograft rejection and humoral rebound in a highly sensitized nonhuman primate kidney transplantation model compared with tacrolimus-based standard-of-care (SOC) immunosuppression. Desensitization with an anti-CD154 mAb (5C8) and a proteasome inhibitor led to decreased donor-specific antibodies (DSAs) and disruption of lymph node germinal centers with reduction of proliferating, memory, and class-switched B cells as well as T follicular helper cells. After transplant, the nonhuman primates maintained on 5C8-based immunosuppression had significantly better survival compared with those maintained on SOC immunosuppression (135.2 days versus 32.8 days, <jats:italic>P</jats:italic> = 0.013). The 5C8-treated group demonstrated better suppression of DSAs after transplant, more robust suppression of B cell populations, and better induction of regulatory T cells. Fewer infectious and welfare complications, including viral reactivation and weight loss, were also observed with 5C8-based immunosuppression compared with SOC immunosuppression. Therefore, anti-CD154 mAbs may improve kidney transplant outcomes through better control of posttransplant immune responses. The superior efficacy of anti-CD154 mAb–based immunosuppression over tacrolimus-based SOC seen in this highly sensitized NHP transplant model suggests that anti-CD154 mAbs could potentially be used to desensitize and treat highly sensitized patients receiving kidney transplantation.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"12 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.adn8130","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Current desensitization and maintenance immunosuppression regimens for kidney transplantation in sensitized individuals show limited ability to control the posttransplant humoral response, resulting in high rates of antibody-mediated rejection (ABMR) and graft failure. Here, we showed that anti-CD154 monoclonal antibody (mAb)–based immunosuppression more effectively controlled allograft rejection and humoral rebound in a highly sensitized nonhuman primate kidney transplantation model compared with tacrolimus-based standard-of-care (SOC) immunosuppression. Desensitization with an anti-CD154 mAb (5C8) and a proteasome inhibitor led to decreased donor-specific antibodies (DSAs) and disruption of lymph node germinal centers with reduction of proliferating, memory, and class-switched B cells as well as T follicular helper cells. After transplant, the nonhuman primates maintained on 5C8-based immunosuppression had significantly better survival compared with those maintained on SOC immunosuppression (135.2 days versus 32.8 days, P = 0.013). The 5C8-treated group demonstrated better suppression of DSAs after transplant, more robust suppression of B cell populations, and better induction of regulatory T cells. Fewer infectious and welfare complications, including viral reactivation and weight loss, were also observed with 5C8-based immunosuppression compared with SOC immunosuppression. Therefore, anti-CD154 mAbs may improve kidney transplant outcomes through better control of posttransplant immune responses. The superior efficacy of anti-CD154 mAb–based immunosuppression over tacrolimus-based SOC seen in this highly sensitized NHP transplant model suggests that anti-CD154 mAbs could potentially be used to desensitize and treat highly sensitized patients receiving kidney transplantation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
期刊最新文献
Lipidomic profiling of mouse brain and human neuron cultures reveals a role for Mboat7 in mTOR-dependent neuronal migration Vaccination with different group 2 influenza subtypes alters epitope targeting and breadth of hemagglutinin stem–specific human B cells An inflammatory state defines a high-risk T-lineage acute lymphoblastic leukemia subgroup Glutamic-pyruvic transaminase 1 deficiency–mediated metabolic reprogramming facilitates colorectal adenoma-carcinoma progression CD154 blockade effectively controls antibody-mediated rejection in highly sensitized nonhuman primate kidney transplant recipients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1