Colloidal ZnAl-Layered Double Hydroxide Nanomaterials for Effective Prevention of SARS-CoV-2.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-12-31 DOI:10.1021/acsabm.4c01204
Yonghua Su, Cuiling Ding, Yaqiong Zhou, Yi Ning Xu, Peng Fei Liu, Xiaoying Sun, Siwei Fan, Haiyu Wu, Tiancheng Zeng, Haoran Peng, Bin Li
{"title":"Colloidal ZnAl-Layered Double Hydroxide Nanomaterials for Effective Prevention of SARS-CoV-2.","authors":"Yonghua Su, Cuiling Ding, Yaqiong Zhou, Yi Ning Xu, Peng Fei Liu, Xiaoying Sun, Siwei Fan, Haiyu Wu, Tiancheng Zeng, Haoran Peng, Bin Li","doi":"10.1021/acsabm.4c01204","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 is a threat to global public health, which requires the development of safe measures to reduce the spread of this coronavirus. Herein, in this study, we prepared and examined potential antiviral agents based on ZnAl-layered double hydroxide (ZnAl-LDH) materials. ZnAl-LDH-based samples were synthesized via a one-pot low-temperature coprecipitation method, which features an ultrathin structure. The incorporation of trace amounts of Ag induces the formation of ZnO particles on the ZnAl-LDH surface, where both ZnO and Ag enhance UV light absorption. Interestingly, ZnAl-LDH-Ag shows a significantly high anticoronavirus effect upon exposure to the daylight lamp of the operation console and ultraviolet light. Moreover, ZnAl-LDH and ZnAl-LDH-Ag potently blocked the entry of SARS-CoV-2 pseudoparticles to cells. The in vivo biocompatibility experiment has demonstrated that ZnAl-LDH-Ag is a potentially biocompatible and potent anti-SARS-CoV-2 agent for virus prevention. The synergistic interactions between these nanoparticles continuously generate reactive oxygen species (ROS), leading to effective and sustained viral inactivation. This light-sensitive ROS production introduces a photocatalytic inactivation mechanism in antiviral materials. Moreover, unlike conventional antiviral agents that rapidly deplete their active components, the layered structure of this composite enables the controlled long-term release of antiviral radicals, enhancing its durability. ZnAl-LDH-Ag has been expected to be a promising solution for long-lasting antiviral applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SARS-CoV-2 is a threat to global public health, which requires the development of safe measures to reduce the spread of this coronavirus. Herein, in this study, we prepared and examined potential antiviral agents based on ZnAl-layered double hydroxide (ZnAl-LDH) materials. ZnAl-LDH-based samples were synthesized via a one-pot low-temperature coprecipitation method, which features an ultrathin structure. The incorporation of trace amounts of Ag induces the formation of ZnO particles on the ZnAl-LDH surface, where both ZnO and Ag enhance UV light absorption. Interestingly, ZnAl-LDH-Ag shows a significantly high anticoronavirus effect upon exposure to the daylight lamp of the operation console and ultraviolet light. Moreover, ZnAl-LDH and ZnAl-LDH-Ag potently blocked the entry of SARS-CoV-2 pseudoparticles to cells. The in vivo biocompatibility experiment has demonstrated that ZnAl-LDH-Ag is a potentially biocompatible and potent anti-SARS-CoV-2 agent for virus prevention. The synergistic interactions between these nanoparticles continuously generate reactive oxygen species (ROS), leading to effective and sustained viral inactivation. This light-sensitive ROS production introduces a photocatalytic inactivation mechanism in antiviral materials. Moreover, unlike conventional antiviral agents that rapidly deplete their active components, the layered structure of this composite enables the controlled long-term release of antiviral radicals, enhancing its durability. ZnAl-LDH-Ag has been expected to be a promising solution for long-lasting antiviral applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Hemostasis Strategies and Recent Advances in Hydrogels for Managing Uncontrolled Hemorrhage. PEGylated Platinum Nanoparticles: A Comprehensive Study of Their Analgesic and Anti-Inflammatory Effects. Sustainable Synthesis of Nitrogen-Embedded Cu2S Quantum Dots for In Vitro and In Vivo Breast Cancer Management. What Factors are Associated with Posttraumatic Growth in Older Adults? A Systematic Review. Clinical Staging as a Novel Approach for Selecting Psychological Treatment Levels for Older Adults with Borderline Personality Disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1