Development of a novel and robust CuO-Co3O4@Biochar nanocomposite using Terminalia chebula leaf extract for reduction of nitro compounds and photodegradation of single and binary mixture of organic contaminants.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2024-12-30 DOI:10.1007/s11356-024-35678-5
Musfica Sultana, Saumya R Mohapatra, Sami Rtimi, Mohammed Ahmaruzzaman
{"title":"Development of a novel and robust CuO-Co<sub>3</sub>O<sub>4</sub>@Biochar nanocomposite using Terminalia chebula leaf extract for reduction of nitro compounds and photodegradation of single and binary mixture of organic contaminants.","authors":"Musfica Sultana, Saumya R Mohapatra, Sami Rtimi, Mohammed Ahmaruzzaman","doi":"10.1007/s11356-024-35678-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, Terminalia chebula leaf extract was used to synthesize CuO-Co<sub>3</sub>O<sub>4</sub> nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid). To ascertain the structure, composition, and morphology of the CuO-Co<sub>3</sub>O<sub>4</sub>@BC photocatalyst, various analytical techniques were employed, including Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Photoluminescence (PL) spectra, Energy Dispersive X-ray analysis (EDX), Brunauer-Emmett-Teller (BET) analysis, and High-Resolution Transmission Electron Microscopy (HRTEM). The optical properties of the nanocatalyst sample were accurately assessed by the use of UV-Diffuse Reflectance Spectroscopy (UV-DRS). The as-synthesized nanocatalyst's photocatalytic capacity was assessed by observing dye degradation in the presence of visible light. It suggests a significant reduction in the rate of recombination of electrons and holes and therefore better charge separation from the catalyst optical properties. It was discovered that the efficient photocatalytic activity of the nanocatalyst had been brought about as a result of the synergistic interactions that had occurred between the different moieties. The growing organic water pollutants Trypan Blue were found to deteriorate to 96.80 ± 1.25% in 21 min and Eosin Y to 98.12 ± 1.42% in 30 min by the photocatalyst under visible light irradiation. For the photodegradation, pseudo-first-order kinetics were employed, with specific reaction rate constant of 0.1068 min<sup>-1</sup> and 0.1429 min<sup>-1</sup> for EY and TB, respectively. Studies have also been conducted to determine the effects of additional variables on deteriorating performance, such as water matrices, beginning concentration, catalyst dose, and contact length. With high catalytic characteristics, the developed CuO-Co<sub>3</sub>O<sub>4</sub>@BC catalyst completes the reduction reactions of 4-NP, 3-NP, and Picric acid in 3, 2.5, and 5 min, respectively. An affordable CuO-Co<sub>3</sub>O<sub>4</sub>@BC is a potential catalyst for turning harmful nitro chemicals into useful products. It also serves as a nano photocatalyst that is stable, can be used again, and is cost-effective.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35678-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, Terminalia chebula leaf extract was used to synthesize CuO-Co3O4 nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid). To ascertain the structure, composition, and morphology of the CuO-Co3O4@BC photocatalyst, various analytical techniques were employed, including Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Photoluminescence (PL) spectra, Energy Dispersive X-ray analysis (EDX), Brunauer-Emmett-Teller (BET) analysis, and High-Resolution Transmission Electron Microscopy (HRTEM). The optical properties of the nanocatalyst sample were accurately assessed by the use of UV-Diffuse Reflectance Spectroscopy (UV-DRS). The as-synthesized nanocatalyst's photocatalytic capacity was assessed by observing dye degradation in the presence of visible light. It suggests a significant reduction in the rate of recombination of electrons and holes and therefore better charge separation from the catalyst optical properties. It was discovered that the efficient photocatalytic activity of the nanocatalyst had been brought about as a result of the synergistic interactions that had occurred between the different moieties. The growing organic water pollutants Trypan Blue were found to deteriorate to 96.80 ± 1.25% in 21 min and Eosin Y to 98.12 ± 1.42% in 30 min by the photocatalyst under visible light irradiation. For the photodegradation, pseudo-first-order kinetics were employed, with specific reaction rate constant of 0.1068 min-1 and 0.1429 min-1 for EY and TB, respectively. Studies have also been conducted to determine the effects of additional variables on deteriorating performance, such as water matrices, beginning concentration, catalyst dose, and contact length. With high catalytic characteristics, the developed CuO-Co3O4@BC catalyst completes the reduction reactions of 4-NP, 3-NP, and Picric acid in 3, 2.5, and 5 min, respectively. An affordable CuO-Co3O4@BC is a potential catalyst for turning harmful nitro chemicals into useful products. It also serves as a nano photocatalyst that is stable, can be used again, and is cost-effective.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Cost-effective production of kombucha bacterial cellulose by evaluating nutrient sources, quality assessment, and dyeing methods. Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation. Geochemical signatures and contamination levels of rare earth elements in soil profiles controlled by parent rock and soil properties. Barriers to transition to resource-oriented sanitation in rural Ethiopia. Comprehensive screening and analysis of pharmaceuticals and pharmaceutically active chemicals in wastewater: health and environmental hazards and removal efficiency of wastewater treatment plant in Malaysia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1