Nanopore sequencing as a novel method of characterising anorexia nervosa risk loci.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2024-12-31 DOI:10.1186/s12864-024-11172-7
Natasha Berthold, Silvana Gaudieri, Sean Hood, Monika Tschochner, Allison L Miller, Jennifer Jordan, Laura M Thornton, Cynthia M Bulik, Patrick Anthony Akkari, Martin A Kennedy
{"title":"Nanopore sequencing as a novel method of characterising anorexia nervosa risk loci.","authors":"Natasha Berthold, Silvana Gaudieri, Sean Hood, Monika Tschochner, Allison L Miller, Jennifer Jordan, Laura M Thornton, Cynthia M Bulik, Patrick Anthony Akkari, Martin A Kennedy","doi":"10.1186/s12864-024-11172-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anorexia nervosa (AN) is a polygenic, severe metabopsychiatric disorder with poorly understood aetiology. Eight significant loci have been identified by genome-wide association studies (GWAS) and single nucleotide polymorphism (SNP)-based heritability was estimated to be ~ 11-17, yet causal variants remain elusive. It is therefore important to define the full spectrum of genetic variants in the wider regions surrounding these significantly associated loci. The hypothesis we evaluate here is that unrecognised or relatively unexplored variants in these regions exist and are promising targets for future functional analyses. To test this hypothesis, we implemented a novel approach with targeted nanopore sequencing (Oxford Nanopore Technologies) for 200 kb regions centred on each of the eight AN-associated loci in 10 AN case samples. Our bioinformatics pipeline entailed base-calling and alignment with Dorado and minimap2 software, followed by variant calling with four separate tools, Sniffles2, Clair3, Straglr, and NanoVar. We then leveraged publicly available databases to characterise these loci in putative functional context and prioritise a subset of potentially relevant variants.</p><p><strong>Results: </strong>Targeted nanopore sequencing effectively enriched the target regions (average coverage 14.64x). To test our hypothesis, we curated a list of 20 prioritised variants in non-coding regions, poorly represented in the current human reference genome but that may have functional consequences in AN pathology. Notably, we identified a polymorphic SINE-VNTR-Alu like sub-family D element (SVA-D), intergenic with IP6K2 and PRKAR2A, and a poly-T short tandem repeat (STR) in the 3'UTR of FOXP1.</p><p><strong>Conclusions: </strong>Our results highlight the potential of targeted nanopore sequencing for characterising poorly resolved or complex variation, which may be initially obscured in risk-associated regions detected by GWAS. Some of the variants identified in this way, such as the polymorphic SVA-D and poly-T STR, could contribute to mechanisms of phenotypic risk, through regulation of several neighbouring genes implicated in AN biology, and affect post-transcriptional processing of FOXP1, respectively. This exploratory investigation was not powered to detect functional effects, however, the variants we observed using this method are poorly represented in the current human reference genome and accompanying databases, and further examination of these may provide new opportunities for improved understanding of genetic risk mechanisms of AN.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1262"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687000/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11172-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Anorexia nervosa (AN) is a polygenic, severe metabopsychiatric disorder with poorly understood aetiology. Eight significant loci have been identified by genome-wide association studies (GWAS) and single nucleotide polymorphism (SNP)-based heritability was estimated to be ~ 11-17, yet causal variants remain elusive. It is therefore important to define the full spectrum of genetic variants in the wider regions surrounding these significantly associated loci. The hypothesis we evaluate here is that unrecognised or relatively unexplored variants in these regions exist and are promising targets for future functional analyses. To test this hypothesis, we implemented a novel approach with targeted nanopore sequencing (Oxford Nanopore Technologies) for 200 kb regions centred on each of the eight AN-associated loci in 10 AN case samples. Our bioinformatics pipeline entailed base-calling and alignment with Dorado and minimap2 software, followed by variant calling with four separate tools, Sniffles2, Clair3, Straglr, and NanoVar. We then leveraged publicly available databases to characterise these loci in putative functional context and prioritise a subset of potentially relevant variants.

Results: Targeted nanopore sequencing effectively enriched the target regions (average coverage 14.64x). To test our hypothesis, we curated a list of 20 prioritised variants in non-coding regions, poorly represented in the current human reference genome but that may have functional consequences in AN pathology. Notably, we identified a polymorphic SINE-VNTR-Alu like sub-family D element (SVA-D), intergenic with IP6K2 and PRKAR2A, and a poly-T short tandem repeat (STR) in the 3'UTR of FOXP1.

Conclusions: Our results highlight the potential of targeted nanopore sequencing for characterising poorly resolved or complex variation, which may be initially obscured in risk-associated regions detected by GWAS. Some of the variants identified in this way, such as the polymorphic SVA-D and poly-T STR, could contribute to mechanisms of phenotypic risk, through regulation of several neighbouring genes implicated in AN biology, and affect post-transcriptional processing of FOXP1, respectively. This exploratory investigation was not powered to detect functional effects, however, the variants we observed using this method are poorly represented in the current human reference genome and accompanying databases, and further examination of these may provide new opportunities for improved understanding of genetic risk mechanisms of AN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Genomic strategies to facilitate breeding for increased β-Glucan content in oat (Avena sativa L.). Characterization of chemosensory genes in the subterranean pest Gryllotalpa Orientalis based on genome assembly and transcriptome comparison. Comparative analysis of the whole transcriptome landscapes of muscle and adipose tissue in Qinchuan beef cattle. Genome-wide association study identifies candidate genes affecting body conformation traits of Zhongwei goat. Slight thermal stress exerts genetic diversity selection at coral (Acropora digitifera) larval stages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1