Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methods.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY In Vitro Cellular & Developmental Biology. Animal Pub Date : 2024-12-30 DOI:10.1007/s11626-024-01003-0
Suja Aarattuthodi, Brian Bosworth, Ganesh Kumar, Anita Nalamalapu
{"title":"Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methods.","authors":"Suja Aarattuthodi, Brian Bosworth, Ganesh Kumar, Anita Nalamalapu","doi":"10.1007/s11626-024-01003-0","DOIUrl":null,"url":null,"abstract":"<p><p>Channel catfish virus (CCV) poses a significant threat to catfish culture. Lack of effective vaccines and antiviral treatments necessitates effective disinfection strategies to mitigate its spread. In vitro trials indicated the virus to be inactivated at high temperatures, but was infectious at 40°C. This study evaluated the efficacy of a commercial disinfectant against CCV using both in vitro and in vivo approaches. In vitro experiments assessed the virucidal activity of the disinfectant against CCV in channel catfish ovary (CCO) cells, while in vivo trials evaluated its effectiveness in reducing viral transmission and mortality among channel and hybrid catfish fingerlings. Results indicated that the disinfectant was effective in inactivating the virus at the tested concentrations and improved the survival of fish exposed to the virus. This study provides critical insights into selecting appropriate disinfection protocols to enhance biosecurity in catfish hatchery settings and to mitigate CCV transmission.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-01003-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Channel catfish virus (CCV) poses a significant threat to catfish culture. Lack of effective vaccines and antiviral treatments necessitates effective disinfection strategies to mitigate its spread. In vitro trials indicated the virus to be inactivated at high temperatures, but was infectious at 40°C. This study evaluated the efficacy of a commercial disinfectant against CCV using both in vitro and in vivo approaches. In vitro experiments assessed the virucidal activity of the disinfectant against CCV in channel catfish ovary (CCO) cells, while in vivo trials evaluated its effectiveness in reducing viral transmission and mortality among channel and hybrid catfish fingerlings. Results indicated that the disinfectant was effective in inactivating the virus at the tested concentrations and improved the survival of fish exposed to the virus. This study provides critical insights into selecting appropriate disinfection protocols to enhance biosecurity in catfish hatchery settings and to mitigate CCV transmission.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体外和体内法测定一种消毒液对通道鲶鱼病毒的药效。
渠道鲶鱼病毒(CCV)对鲶鱼养殖构成重大威胁。由于缺乏有效的疫苗和抗病毒治疗,必须采取有效的消毒策略来减轻其传播。体外试验表明,该病毒在高温下灭活,但在40℃时具有传染性。本研究通过体外和体内两种方法评估了一种商业消毒剂对CCV的功效。体外实验评估了该消毒剂对通道鲶鱼卵巢(CCO)细胞中CCV的杀病毒活性,体内实验评估了其在通道鲶鱼和杂交鲶鱼幼鱼中降低病毒传播和死亡率的有效性。结果表明,该消毒剂能有效灭活该病毒,并能提高暴露于该病毒的鱼的存活率。本研究为选择适当的消毒方案以增强鲶鱼孵化场的生物安全性和减轻CCV传播提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
期刊最新文献
Compatibility of Calycosin-Tanshinone IIA improves Ang II-induced renal artery endothelial cell dysfunction through lncRNA-mRNA co-expression network. Atorvastatin inhibits ischemia‒reperfusion-associated renal tubular cell ferroptosis by blocking the PGE2/EP4 signaling pathway. Development and characterization of a cell line from the caudal fin of Schizothorax niger (Heckel, 1838) for in vitro toxicity testing. Response of epithelial cell lines from the rainbow trout gut and gill to ammonia. The impact of beauvericin on rainbow trout intestinal epithelial cells at different temperatures and dosing methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1