N Protein of Tomato Spotted Wilt Virus Proven to Be Antagonistic Against Tomato Yellow Leaf Curl Virus in Nicotiana benthamiana.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Molecular plant pathology Pub Date : 2025-01-01 DOI:10.1111/mpp.70046
Ning Qiao, Hongmei Liu, Yuxing Chen, Dezhen Zhang, Jie Liu, Hanru Sun, Yongguang Liu, Xiaoping Zhu, Xiaoan Sun
{"title":"N Protein of Tomato Spotted Wilt Virus Proven to Be Antagonistic Against Tomato Yellow Leaf Curl Virus in Nicotiana benthamiana.","authors":"Ning Qiao, Hongmei Liu, Yuxing Chen, Dezhen Zhang, Jie Liu, Hanru Sun, Yongguang Liu, Xiaoping Zhu, Xiaoan Sun","doi":"10.1111/mpp.70046","DOIUrl":null,"url":null,"abstract":"<p><p>Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms. Western blot analysis indicated that TSWV N was involved in down-regulating the expression level of the V1, C3, and C4 proteins of TYLCV, among which V1 was the most significantly suppressed one. Moreover, TSWV N was confirmed to reduce TYLCV V1 within both nucleus and cytoplasm, but a greater suppression was observed in cytoplasm. The co-immunoprecipitation and mass spectrometry identified 244 differential proteins from the TYLCV-infected TSWV N transgenic N. benthamiana seedling. These proteins pertaining to energy metabolism pathways were enriched, suggesting that TSWV N could inhibit TYLCV through competing for energy or regulating energy-related metabolism. The evidence presented here offers a novel perspective that will facilitate a comprehensive understanding of virus-virus and virus-host interactions, as well as a potential strategy for plant virus control through using TSWV N in the near future.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"26 1","pages":"e70046"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70046","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms. Western blot analysis indicated that TSWV N was involved in down-regulating the expression level of the V1, C3, and C4 proteins of TYLCV, among which V1 was the most significantly suppressed one. Moreover, TSWV N was confirmed to reduce TYLCV V1 within both nucleus and cytoplasm, but a greater suppression was observed in cytoplasm. The co-immunoprecipitation and mass spectrometry identified 244 differential proteins from the TYLCV-infected TSWV N transgenic N. benthamiana seedling. These proteins pertaining to energy metabolism pathways were enriched, suggesting that TSWV N could inhibit TYLCV through competing for energy or regulating energy-related metabolism. The evidence presented here offers a novel perspective that will facilitate a comprehensive understanding of virus-virus and virus-host interactions, as well as a potential strategy for plant virus control through using TSWV N in the near future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
番茄斑萎病毒的N蛋白对番茄黄叶曲病毒具有拮抗作用。
番茄斑点枯萎病毒(TSWV)和番茄黄卷叶病毒(TYLCV)是两种不同昆虫媒介传播的无亲缘关系病毒,是番茄和其他蔬菜生产的主要威胁。虽然TSWV和TYLCV在同一寄主植物上的共同感染已经有很多报道,但当两种病毒共存于同一番茄或其他植物中时,仍然缺乏试图阐明两种病毒之间关系的机制的研究。在评估了四种TSWV编码蛋白对TSWV N转基因本烟幼苗中TYLCV的抑制作用后,TSWV N蛋白被证明可以有效减少TYLCV的数量和病毒症状。Western blot分析表明,TSWV N参与下调TYLCV V1、C3和C4蛋白的表达水平,其中V1蛋白受抑制最为显著。此外,证实TSWV N在细胞核和细胞质中都能降低TYLCV V1,但在细胞质中观察到更大的抑制作用。免疫共沉淀法和质谱法从tylcv感染的转TSWV N转基因benthamiana幼苗中鉴定出244个差异蛋白。这些与能量代谢途径相关的蛋白质被富集,表明TSWV N可能通过竞争能量或调节能量相关代谢来抑制TYLCV。本文提出的证据提供了一个新的视角,将有助于全面了解病毒-病毒和病毒-宿主相互作用,以及在不久的将来通过使用TSWV N控制植物病毒的潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
期刊最新文献
PthXo2B Orthologue Tal7 of Xanthomonas oryzae pv. oryzae Strain IX-221 Acts as a Major Virulence Factor in Indica Rice Without Activating a Clade III SWEET Gene. Non-Invasive, Bioluminescence-Based Visualisation and Quantification of Bacterial Infections in Arabidopsis Over Time. Novel Regulators and Their Epistatic Networks in Arabidopsis' Defence Responses to Alternaria alternata Infection. Identification and Application of the Heptad Repeat Domain in the CPR5 Protein for Enhancing Plant Immunity. The Wheat NLR Protein PM3b Localises to Endoplasmic Reticulum-Plasma Membrane Contact Sites and Interacts With AVRPM3b2/c2 Through Its LRR Domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1