In silico identification and ex vivo evaluation of Toxoplasma gondii peptides restricted to HLA-A*02, HLA-A*24 and HLA-B*35 alleles in human PBMC from a Colombian population.

IF 5.5 3区 医学 Q1 IMMUNOLOGY Medical Microbiology and Immunology Pub Date : 2024-12-31 DOI:10.1007/s00430-024-00815-x
Mónica Vargas-Montes, María Camila Valencia-Jaramillo, Juan David Valencia-Hernández, Jorge Enrique Gómez-Marín, Ailan Farid Arenas, Néstor Cardona
{"title":"In silico identification and ex vivo evaluation of Toxoplasma gondii peptides restricted to HLA-A*02, HLA-A*24 and HLA-B*35 alleles in human PBMC from a Colombian population.","authors":"Mónica Vargas-Montes, María Camila Valencia-Jaramillo, Juan David Valencia-Hernández, Jorge Enrique Gómez-Marín, Ailan Farid Arenas, Néstor Cardona","doi":"10.1007/s00430-024-00815-x","DOIUrl":null,"url":null,"abstract":"<p><p>Toxoplasma gondii infects approximately 30% of the population, and there is currently no approved vaccine. Identifying immunogenic peptides with high affinity to different HLA molecules is a promising vaccine strategy. This study used an in silico approach using artificial neural networks to identify T. gondii peptides restricted to HLA-A*02, HLA-A*24, and HLA-B*35 alleles. Proteomes from seven T. gondii strains and transcriptomic data of overexpressed genes from T. gondii-RH in human PBMC were also used. Parasite protein sequences were analyzed with R 'Epitope Prediction' library. Peptide candidates were evaluated in the artificial neural networks based on the probabilities of output neurons (p > 0.5). The IFN-γ responses in PBMC from T. gondii seronegative and seropositive individuals were evaluated by ELISpot. Peptides with higher IFN-γ induction were evaluated to identify cytotoxic response in CD8<sup>+</sup> T cells (CD107a). In silico analysis identified 36 peptides from T. gondii proteins with predicted affinity to HLA-A*02, A*24, and B*35 alleles. Experiments with PBMCs revealed that a peptide restricted to HLA-A02 (P1: FLFAWITYV) induced a significant increase in IFN-γ-producing cells (p = 0.004). For HLA-A24, a peptide (P8: VFAFAFAFFLI) also induced a significant IFN-γ response (p = 0.004), while for the HLA-B*35 allele, the P6 peptide (YPIAPSFAM) induced a response that differed significantly from the control (p = 0.05). These peptides induced also a significant percentage of central memory CD8 + T cells expressing the degranulation marker CD107a (p < 0.05). Finally, we identified three T. gondii peptides that induced IFN-γ response, and a cytotoxic response measured by CD107a expression on CD45RAneg-CD8 cells. These peptides could be considered part of a multi-epitope vaccine against toxoplasmosis in humans.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"214 1","pages":"5"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-024-00815-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Toxoplasma gondii infects approximately 30% of the population, and there is currently no approved vaccine. Identifying immunogenic peptides with high affinity to different HLA molecules is a promising vaccine strategy. This study used an in silico approach using artificial neural networks to identify T. gondii peptides restricted to HLA-A*02, HLA-A*24, and HLA-B*35 alleles. Proteomes from seven T. gondii strains and transcriptomic data of overexpressed genes from T. gondii-RH in human PBMC were also used. Parasite protein sequences were analyzed with R 'Epitope Prediction' library. Peptide candidates were evaluated in the artificial neural networks based on the probabilities of output neurons (p > 0.5). The IFN-γ responses in PBMC from T. gondii seronegative and seropositive individuals were evaluated by ELISpot. Peptides with higher IFN-γ induction were evaluated to identify cytotoxic response in CD8+ T cells (CD107a). In silico analysis identified 36 peptides from T. gondii proteins with predicted affinity to HLA-A*02, A*24, and B*35 alleles. Experiments with PBMCs revealed that a peptide restricted to HLA-A02 (P1: FLFAWITYV) induced a significant increase in IFN-γ-producing cells (p = 0.004). For HLA-A24, a peptide (P8: VFAFAFAFFLI) also induced a significant IFN-γ response (p = 0.004), while for the HLA-B*35 allele, the P6 peptide (YPIAPSFAM) induced a response that differed significantly from the control (p = 0.05). These peptides induced also a significant percentage of central memory CD8 + T cells expressing the degranulation marker CD107a (p < 0.05). Finally, we identified three T. gondii peptides that induced IFN-γ response, and a cytotoxic response measured by CD107a expression on CD45RAneg-CD8 cells. These peptides could be considered part of a multi-epitope vaccine against toxoplasmosis in humans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在哥伦比亚人群的人类 PBMC 中,对限制 HLA-A*02、HLA-A*24 和 HLA-B*35 等位基因的弓形虫肽进行硅学鉴定和体内外评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.60
自引率
0.00%
发文量
29
审稿时长
1 months
期刊介绍: Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens. MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question. The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention. The following categories of manuscripts will not be considered for publication in MMIM: submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest, manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs, manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action, manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem, case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.
期刊最新文献
Dissemination of arr-2 and arr-3 is associated with class 1 integrons in Klebsiella pneumoniae clinical isolates from Portugal. In silico identification and ex vivo evaluation of Toxoplasma gondii peptides restricted to HLA-A*02, HLA-A*24 and HLA-B*35 alleles in human PBMC from a Colombian population. Deciphering long-term immune effects of HIV-1/SARS-CoV-2 co-infection: a longitudinal study. Significance of diagnostic and therapeutic potential of serum endothelial and inflammatory biomarkers in defining disease severity of dengue infected patients. Proportions of IgA antibodies targeting glycosylated epitopes of secreted Escherichia coli mucinase YghJ in initial plasmablast response differ from salivary and intestinally secreted IgA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1