{"title":"Designing fluorescent covalent organic frameworks through regulation of link bond for selective detection of Al<sup>3+</sup> and Ce<sup>3</sup>.","authors":"Yingwei Gao, Shuo Zhang, Bo Ge, Hui Zhao, Chuanyu Jin, Hui Yan, Limin Zhao","doi":"10.1016/j.saa.2024.125620","DOIUrl":null,"url":null,"abstract":"<p><p>The high thermal stability and chemical durability of amide-linked covalent organic frameworks (amide COFs) make them a promising material for a range of new applications. Nevertheless, the low reversibility of the amide bond presents a significant challenge to the direct synthesis of amide-bonded COFs. In this paper, we present a simple method for synthesizing amide COFs. The synthesis of imine-linked COFs was initially achieved through the reaction of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde. Subsequently, amide COFs were synthesized via the oxidation of the imine bond into an amide bond, utilizing ammonium persulfate as the oxidizing agent. Due to the difference of link bond, two COFs separately displayed distinct and significant fluorescence enhancement for Al<sup>3+</sup> and Ce<sup>3+</sup>, which was highly sensitive and less affected by environmental factors. The strategy offers a novel approach to the convenient and environmentally benign synthesis of amide COFs, which may facilitate their wider applications.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"329 ","pages":"125620"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The high thermal stability and chemical durability of amide-linked covalent organic frameworks (amide COFs) make them a promising material for a range of new applications. Nevertheless, the low reversibility of the amide bond presents a significant challenge to the direct synthesis of amide-bonded COFs. In this paper, we present a simple method for synthesizing amide COFs. The synthesis of imine-linked COFs was initially achieved through the reaction of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde. Subsequently, amide COFs were synthesized via the oxidation of the imine bond into an amide bond, utilizing ammonium persulfate as the oxidizing agent. Due to the difference of link bond, two COFs separately displayed distinct and significant fluorescence enhancement for Al3+ and Ce3+, which was highly sensitive and less affected by environmental factors. The strategy offers a novel approach to the convenient and environmentally benign synthesis of amide COFs, which may facilitate their wider applications.