Temperature effect on the efficacy of 3 entomopathogenic nematode isolates against larvae of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae).
Eirini Karanastasi, Anna Nikorezou, Maria Stamouli, Anna Skourti, Maria C Boukouvala, Nickolas G Kavallieratos
{"title":"Temperature effect on the efficacy of 3 entomopathogenic nematode isolates against larvae of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae).","authors":"Eirini Karanastasi, Anna Nikorezou, Maria Stamouli, Anna Skourti, Maria C Boukouvala, Nickolas G Kavallieratos","doi":"10.1093/jee/toae292","DOIUrl":null,"url":null,"abstract":"<p><p>The lesser mealworm Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae), an important insect pest of stored-product commodities and poultry production systems, is regarded among the most difficult species to control. It has developed resistance to many chemical insecticides, and though various cultural and biological methods have been assessed and identified as possible factors for its control, none are currently implemented. Entomopathogenic nematodes are often successfully employed as alternative to chemicals biocontrol agents of various insect species, including pests of stored products; nevertheless, their evaluation as potential biocontrol factors of the lesser mealworm is not efficiently scrutinized. In the current study, single A. diaperinus larvae were exposed to six doses of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae), and Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae), for 4 and 8 d, and mortality was recorded at 3 different temperature regimes, i.e., 25 oC, 30 oC, and 35 oC. The study concludes that S. carpocapsae and S. feltiae are both highly virulent against A. diaperinus larvae and may be considered as promising biological control agents for reducing lesser mealworm infestations when applied at a rate of 70 IJs/cm2 at 25 oC. When assessed at 30 oC, both species were effective at the same rate though causing lower mortality of ~60% and ~50%, respectively, whereas their efficacy was low at 35 oC.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toae292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The lesser mealworm Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae), an important insect pest of stored-product commodities and poultry production systems, is regarded among the most difficult species to control. It has developed resistance to many chemical insecticides, and though various cultural and biological methods have been assessed and identified as possible factors for its control, none are currently implemented. Entomopathogenic nematodes are often successfully employed as alternative to chemicals biocontrol agents of various insect species, including pests of stored products; nevertheless, their evaluation as potential biocontrol factors of the lesser mealworm is not efficiently scrutinized. In the current study, single A. diaperinus larvae were exposed to six doses of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae), and Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae), for 4 and 8 d, and mortality was recorded at 3 different temperature regimes, i.e., 25 oC, 30 oC, and 35 oC. The study concludes that S. carpocapsae and S. feltiae are both highly virulent against A. diaperinus larvae and may be considered as promising biological control agents for reducing lesser mealworm infestations when applied at a rate of 70 IJs/cm2 at 25 oC. When assessed at 30 oC, both species were effective at the same rate though causing lower mortality of ~60% and ~50%, respectively, whereas their efficacy was low at 35 oC.