Boram Jeong, Seungjae Lee, Shinhee Ye, Donghwan Lee, Woojoo Lee
{"title":"Sensitivity Analysis for Effects of Multiple Exposures in the Presence of Unmeasured Confounding.","authors":"Boram Jeong, Seungjae Lee, Shinhee Ye, Donghwan Lee, Woojoo Lee","doi":"10.1002/bimj.70033","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiological research aims to investigate how multiple exposures affect health outcomes of interest, but observational studies often suffer from biases caused by unmeasured confounders. In this study, we develop a novel sensitivity model to investigate the effect of correlated multiple exposures on the continuous health outcomes of interest. The proposed sensitivity analysis is model-agnostic and can be applied to any machine learning algorithm. The interval of single- or joint-exposure effects is efficiently obtained by solving a linear programming problem with a quadratic constraint. Some strategies for reducing the input burden in the sensitivity analysis are discussed. We demonstrate the usefulness of sensitivity analysis via numerical studies and real data application.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 1","pages":"e70033"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bimj.70033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epidemiological research aims to investigate how multiple exposures affect health outcomes of interest, but observational studies often suffer from biases caused by unmeasured confounders. In this study, we develop a novel sensitivity model to investigate the effect of correlated multiple exposures on the continuous health outcomes of interest. The proposed sensitivity analysis is model-agnostic and can be applied to any machine learning algorithm. The interval of single- or joint-exposure effects is efficiently obtained by solving a linear programming problem with a quadratic constraint. Some strategies for reducing the input burden in the sensitivity analysis are discussed. We demonstrate the usefulness of sensitivity analysis via numerical studies and real data application.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.