{"title":"Deep learning solution to mean field game of optimal liquidation","authors":"Shuhua Zhang, Shenghua Qian, Xinyu Wang, Yilin Cheng","doi":"10.1016/j.frl.2024.106663","DOIUrl":null,"url":null,"abstract":"This paper addresses optimal portfolio liquidation using Mean Field Games (MFGs) and presents a solution method to tackle high-dimensional challenges. We develop a deep learning approach that employs two sub-networks to approximate solutions to the relevant partial differential equations. Our method adheres to the requirements of differential operators and satisfies both initial and terminal conditions through simultaneous training. A key advantage of our approach is its mesh-free nature, which mitigates the curse of dimensionality encountered in traditional numerical methods. We validate the effectiveness of our approach through numerical experiments on multi-dimensional portfolio liquidation models.","PeriodicalId":12167,"journal":{"name":"Finance Research Letters","volume":"6 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance Research Letters","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1016/j.frl.2024.106663","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses optimal portfolio liquidation using Mean Field Games (MFGs) and presents a solution method to tackle high-dimensional challenges. We develop a deep learning approach that employs two sub-networks to approximate solutions to the relevant partial differential equations. Our method adheres to the requirements of differential operators and satisfies both initial and terminal conditions through simultaneous training. A key advantage of our approach is its mesh-free nature, which mitigates the curse of dimensionality encountered in traditional numerical methods. We validate the effectiveness of our approach through numerical experiments on multi-dimensional portfolio liquidation models.
期刊介绍:
Finance Research Letters welcomes submissions across all areas of finance, aiming for rapid publication of significant new findings. The journal particularly encourages papers that provide insight into the replicability of established results, examine the cross-national applicability of previous findings, challenge existing methodologies, or demonstrate methodological contingencies.
Papers are invited in the following areas:
Actuarial studies
Alternative investments
Asset Pricing
Bankruptcy and liquidation
Banks and other Depository Institutions
Behavioral and experimental finance
Bibliometric and Scientometric studies of finance
Capital budgeting and corporate investment
Capital markets and accounting
Capital structure and payout policy
Commodities
Contagion, crises and interdependence
Corporate governance
Credit and fixed income markets and instruments
Derivatives
Emerging markets
Energy Finance and Energy Markets
Financial Econometrics
Financial History
Financial intermediation and money markets
Financial markets and marketplaces
Financial Mathematics and Econophysics
Financial Regulation and Law
Forecasting
Frontier market studies
International Finance
Market efficiency, event studies
Mergers, acquisitions and the market for corporate control
Micro Finance Institutions
Microstructure
Non-bank Financial Institutions
Personal Finance
Portfolio choice and investing
Real estate finance and investing
Risk
SME, Family and Entrepreneurial Finance