Interpretable Optimization-Inspired Unfolding Network for Low-Light Image Enhancement

Wenhui Wu;Jian Weng;Pingping Zhang;Xu Wang;Wenhan Yang;Jianmin Jiang
{"title":"Interpretable Optimization-Inspired Unfolding Network for Low-Light Image Enhancement","authors":"Wenhui Wu;Jian Weng;Pingping Zhang;Xu Wang;Wenhan Yang;Jianmin Jiang","doi":"10.1109/TPAMI.2024.3524538","DOIUrl":null,"url":null,"abstract":"Retinex model-based methods have shown to be effective in layer-wise manipulation with well-designed priors for low-light image enhancement (LLIE). However, the hand-crafted priors and conventional optimization algorithm adopted to solve the layer decomposition problem result in the lack of adaptivity and efficiency. To this end, this paper proposes a Retinex-based deep unfolding network (URetinex-Net++), which unfolds an optimization problem into a learnable network to decompose a low-light image into reflectance and illumination layers. By formulating the decomposition problem as an implicit priors regularized model, three learning-based modules are carefully designed, responsible for data-dependent initialization, high-efficient unfolding optimization, and fairly-flexible component adjustment, respectively. Particularly, the proposed unfolding optimization module, introducing two networks to adaptively fit implicit priors in the data-driven manner, can realize noise suppression and details preservation for decomposed components. URetinex-Net++ is a further augmented version of URetinex-Net, which introduces a cross-stage fusion block to alleviate the color defect in URetinex-Net. Therefore, boosted performance on LLIE can be obtained in both visual quality and quantitative metrics, where only a few parameters are introduced and little time is cost. Extensive experiments on real-world low-light images qualitatively and quantitatively demonstrate the effectiveness and superiority of the proposed URetinex-Net++ over state-of-the-art methods.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2545-2562"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10819641/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retinex model-based methods have shown to be effective in layer-wise manipulation with well-designed priors for low-light image enhancement (LLIE). However, the hand-crafted priors and conventional optimization algorithm adopted to solve the layer decomposition problem result in the lack of adaptivity and efficiency. To this end, this paper proposes a Retinex-based deep unfolding network (URetinex-Net++), which unfolds an optimization problem into a learnable network to decompose a low-light image into reflectance and illumination layers. By formulating the decomposition problem as an implicit priors regularized model, three learning-based modules are carefully designed, responsible for data-dependent initialization, high-efficient unfolding optimization, and fairly-flexible component adjustment, respectively. Particularly, the proposed unfolding optimization module, introducing two networks to adaptively fit implicit priors in the data-driven manner, can realize noise suppression and details preservation for decomposed components. URetinex-Net++ is a further augmented version of URetinex-Net, which introduces a cross-stage fusion block to alleviate the color defect in URetinex-Net. Therefore, boosted performance on LLIE can be obtained in both visual quality and quantitative metrics, where only a few parameters are introduced and little time is cost. Extensive experiments on real-world low-light images qualitatively and quantitatively demonstrate the effectiveness and superiority of the proposed URetinex-Net++ over state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可解释优化的弱光图像增强展开网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1