Microphone Array Signal Processing and Deep Learning for Speech Enhancement: Combining model-based and data-driven approaches to parameter estimation and filtering [Special Issue On Model-Based and Data-Driven Audio Signal Processing]
Reinhold Hëb-Umbach;Tomohiro Nakatani;Marc Delcroix;Christoph Boeddeker;Tsubasa Ochiai
{"title":"Microphone Array Signal Processing and Deep Learning for Speech Enhancement: Combining model-based and data-driven approaches to parameter estimation and filtering [Special Issue On Model-Based and Data-Driven Audio Signal Processing]","authors":"Reinhold Hëb-Umbach;Tomohiro Nakatani;Marc Delcroix;Christoph Boeddeker;Tsubasa Ochiai","doi":"10.1109/MSP.2024.3451653","DOIUrl":null,"url":null,"abstract":"Multichannel acoustic signal processing is a well-established and powerful tool to exploit the spatial diversity between a target signal and nontarget or noise sources for signal enhancement. However, the textbook solutions for optimal data-dependent spatial filtering rest on the knowledge of second-order statistical moments of the signals, which have traditionally been difficult to acquire. In this contribution, we compare model-based, purely data-driven, and hybrid approaches to parameter estimation and filtering, where the latter tries to combine the benefits of model-based signal processing and data-driven deep learning to overcome their individual deficiencies. We illustrate the underlying design principles with examples from noise reduction, source separation, and dereverberation.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 6","pages":"12-23"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819706/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multichannel acoustic signal processing is a well-established and powerful tool to exploit the spatial diversity between a target signal and nontarget or noise sources for signal enhancement. However, the textbook solutions for optimal data-dependent spatial filtering rest on the knowledge of second-order statistical moments of the signals, which have traditionally been difficult to acquire. In this contribution, we compare model-based, purely data-driven, and hybrid approaches to parameter estimation and filtering, where the latter tries to combine the benefits of model-based signal processing and data-driven deep learning to overcome their individual deficiencies. We illustrate the underlying design principles with examples from noise reduction, source separation, and dereverberation.
期刊介绍:
EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.