Autocatalytic Interfacial Synthesis of Self-Standing Amide-Linked Covalent Organic Framework Membranes

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-02 DOI:10.1002/anie.202423220
Lei Fang, Hui Xu, Suyu Qiu, Tao Ye, Dr. Tianqi Wang, Prof. Jin Shang, Prof. Cheng Gu, Prof. Susumu Kitagawa, Prof. Liangchun Li
{"title":"Autocatalytic Interfacial Synthesis of Self-Standing Amide-Linked Covalent Organic Framework Membranes","authors":"Lei Fang,&nbsp;Hui Xu,&nbsp;Suyu Qiu,&nbsp;Tao Ye,&nbsp;Dr. Tianqi Wang,&nbsp;Prof. Jin Shang,&nbsp;Prof. Cheng Gu,&nbsp;Prof. Susumu Kitagawa,&nbsp;Prof. Liangchun Li","doi":"10.1002/anie.202423220","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP). Highly crystalline amide and imine bilinker COF (AICOF) membranes are readily synthesized by AIP strategy which ingeniously leverages interfacial polymerization to generate amide units followed by an autocatalytic condensation that forms imine bonds. Then, the fully amide-linked AmCOF membranes with Turing structures can be prepared through irreversible linker renovation. The universality of this method has been exemplified by nine AmCOF membranes. Among them, the AmCOF-1 membrane exhibits superior performance for H<sub>2</sub>O<sub>2</sub> photosynthesis (4353 μmol g<sup>−1</sup> h<sup>−1</sup>) and high stability, enabling continuous production of H<sub>2</sub>O<sub>2</sub> under sunlight for 150 h without sacrificial agents. Mechanistic investigations reveal that the greatly improved properties are attributable to the built-in robust amide knots, facilitating full separation of electrons and holes, ultra-long exciton diffusion length, and fast dissociation of excitons within the AmCOF channels.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 13","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202423220","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP). Highly crystalline amide and imine bilinker COF (AICOF) membranes are readily synthesized by AIP strategy which ingeniously leverages interfacial polymerization to generate amide units followed by an autocatalytic condensation that forms imine bonds. Then, the fully amide-linked AmCOF membranes with Turing structures can be prepared through irreversible linker renovation. The universality of this method has been exemplified by nine AmCOF membranes. Among them, the AmCOF-1 membrane exhibits superior performance for H2O2 photosynthesis (4353 μmol g−1 h−1) and high stability, enabling continuous production of H2O2 under sunlight for 150 h without sacrificial agents. Mechanistic investigations reveal that the greatly improved properties are attributable to the built-in robust amide knots, facilitating full separation of electrons and holes, ultra-long exciton diffusion length, and fast dissociation of excitons within the AmCOF channels.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自催化界面合成自立酰胺连接共价有机框架膜
结晶共价有机骨架(COFs)的合成原则上依赖于可逆的动态化学。为推动碳纳米管化学进入一个新时代,迫切需要一种合成不可逆键合碳纳米管的通用方法。本文报道了一种通用的两步法,通过自催化界面聚合(AIP)直接合成不可逆酰胺连接COF (AmCOF)膜。高度结晶的酰胺和亚胺双联剂COF (AICOF)膜很容易通过AIP策略合成,该策略巧妙地利用界面聚合生成酰胺单元,然后通过自催化缩合形成亚胺键。然后,通过不可逆的连接剂改造,制备出具有图灵结构的全酰胺连接AmCOF膜。该方法的普遍性已通过9个AmCOF膜得到验证。其中,AmCOF-1膜具有较好的H2O2光合作用性能(4353µmol g−1 h−1)和较高的稳定性,可在光照下连续生产H2O2 150 h,无需牺牲剂。机理研究表明,AmCOF的性能得到了很大的改善,这要归功于内置的坚固的酰胺结,促进了电子和空穴的完全分离,超长的激子扩散长度,以及激子在AmCOF通道内的快速解离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Engineering Intralayer Anisotropy in Covalent Organic Frameworks Analyte‐Targeted Plasmonic Hotspots on Superlattice Mirror Enable Ultra‐Broad‐Range SERS Sensing of Acetylcholinesterase Non‐Radical Photocured 3D Printing of Liquid Crystal Elastomers Diazirines Beyond Photoaffinity Labeling: A Comprehensive Overview of Applications in Biological Sciences, Materials Chemistry, and NMR‐Spectroscopy A Fluorine-Free Chaotropic Electrolyte Promoting Zinc Peroxide Chemistry for Non-Alkaline Zinc-Air Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1