Poly(vinyl butyrate) Esters as Stable Polymer Matrix for Solid-State Li-Metal Batteries

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2025-01-02 DOI:10.1021/acsenergylett.4c02527
Michel Armand, Sylvie Grugeon, Kerman Gomez Castresana, Juan Miguel Lopez del Amo, Francisco Bonilla, Rosalía Cid, Stephane Laruelle, Shanmukaraj Devaraj
{"title":"Poly(vinyl butyrate) Esters as Stable Polymer Matrix for Solid-State Li-Metal Batteries","authors":"Michel Armand, Sylvie Grugeon, Kerman Gomez Castresana, Juan Miguel Lopez del Amo, Francisco Bonilla, Rosalía Cid, Stephane Laruelle, Shanmukaraj Devaraj","doi":"10.1021/acsenergylett.4c02527","DOIUrl":null,"url":null,"abstract":"Li-metal-based batteries are considered as the next alternative to Li-ion batteries owing to their high specific capacity and energy density. Alleviating the use of liquid electrolytes, solid-state batteries using polymer electrolytes have gained vast attention. However, Li-metal solid-state batteries have major concerns regarding the non-total suppression of dendrites and high reactivity of the Li metal with certain polymers like polycaprolactones and polycarbonates, having main chain ester groups and which are considered as alternatives to PEO-based matrices. Herein we have designed a robust polymer matrix, namely, poly(vinyl butyrate) ester starting from a biodegradable polymer that is highly stable with Li metal, with appreciable ionic conductivity and single-ion conducting properties. A first approach has been made on these types of polymer matrices that not only introduces a modified polymer architecture for dry ester-based electrolytes but also shows unprecedented improvement in electrolyte performance with Li-metal polymer batteries.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"20 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02527","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Li-metal-based batteries are considered as the next alternative to Li-ion batteries owing to their high specific capacity and energy density. Alleviating the use of liquid electrolytes, solid-state batteries using polymer electrolytes have gained vast attention. However, Li-metal solid-state batteries have major concerns regarding the non-total suppression of dendrites and high reactivity of the Li metal with certain polymers like polycaprolactones and polycarbonates, having main chain ester groups and which are considered as alternatives to PEO-based matrices. Herein we have designed a robust polymer matrix, namely, poly(vinyl butyrate) ester starting from a biodegradable polymer that is highly stable with Li metal, with appreciable ionic conductivity and single-ion conducting properties. A first approach has been made on these types of polymer matrices that not only introduces a modified polymer architecture for dry ester-based electrolytes but also shows unprecedented improvement in electrolyte performance with Li-metal polymer batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Benzo[c]cinnoline Organic Anode Enables 1.3 V-Class Alkaline Aqueous Batteries (Bi)carbonate Precipitation and Gas Diffusion Electrode Stability Coexist during Pulsed Electrochemical CO2 Reduction Electron Beam-Induced Artifacts in SEI Characterization: Evidence from Controlled-Dose Diffraction Studies Poly(vinyl butyrate) Esters as Stable Polymer Matrix for Solid-State Li-Metal Batteries 5-Hydroxymethylfurfural Oxidation in Scaled Anion Exchange Membrane Electrolyzer with NiCuOx Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1