Mechanochemical Urea Synthesis Using Ammonia–Water and Carbon Dioxide Under Mild Conditions: An Experimental and Theoretical Study

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-01-02 DOI:10.1021/acssuschemeng.4c05811
Yichun Lou, Haoyu Chen, Linrui Wang, Shengpeng Chen, Yameng Song, Yifei Ding, Zixiang Hao, Chengli He, Dong Qiu, Hui Li, Junjian Wang, Duanyang Liu, Xiaoli Cui
{"title":"Mechanochemical Urea Synthesis Using Ammonia–Water and Carbon Dioxide Under Mild Conditions: An Experimental and Theoretical Study","authors":"Yichun Lou, Haoyu Chen, Linrui Wang, Shengpeng Chen, Yameng Song, Yifei Ding, Zixiang Hao, Chengli He, Dong Qiu, Hui Li, Junjian Wang, Duanyang Liu, Xiaoli Cui","doi":"10.1021/acssuschemeng.4c05811","DOIUrl":null,"url":null,"abstract":"The production of urea predominantly relies on the energy-intensive Bosch–Meiser process, which operates at temperatures ranging from 150 to 200 °C and pressures of approximately 150 to 250 bar. More sustainable approaches to urea synthesis under milder conditions remain a significant challenge. Herein, we demonstrate that urea can be synthesized via a mechanochemical method using ammonia–water and CO<sub>2</sub> under an ambient environment. Without extra catalysts, the ZrO<sub>2</sub> texture of the jar and grinding balls has a crucial mechanocatalytic effect on direct urea synthesis. Experimental data coupled with theoretical calculation results indicate that the mechano-induced oxygen vacancies (O<sub>V</sub>) within the (101) crystal plane of ZrO<sub>2</sub> play a pivotal role in urea formation. These vacancies notably reduce the energy barrier for the generation of *NH<sub>2</sub> and the subsequent decomposition of NH<sub>2</sub>COOH, thereby facilitating a more energy-efficient urea synthesis process. This work presents a novel method for synthesizing urea under mild conditions, offering potential cost-effective alternatives to urea production.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"4 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c05811","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The production of urea predominantly relies on the energy-intensive Bosch–Meiser process, which operates at temperatures ranging from 150 to 200 °C and pressures of approximately 150 to 250 bar. More sustainable approaches to urea synthesis under milder conditions remain a significant challenge. Herein, we demonstrate that urea can be synthesized via a mechanochemical method using ammonia–water and CO2 under an ambient environment. Without extra catalysts, the ZrO2 texture of the jar and grinding balls has a crucial mechanocatalytic effect on direct urea synthesis. Experimental data coupled with theoretical calculation results indicate that the mechano-induced oxygen vacancies (OV) within the (101) crystal plane of ZrO2 play a pivotal role in urea formation. These vacancies notably reduce the energy barrier for the generation of *NH2 and the subsequent decomposition of NH2COOH, thereby facilitating a more energy-efficient urea synthesis process. This work presents a novel method for synthesizing urea under mild conditions, offering potential cost-effective alternatives to urea production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Diacetylmonoxime
阿拉丁
Thiosemicarbazide
阿拉丁
Urea
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Green Synthesis of Cellulose Acetate Mixed Matrix Membranes: Structure–Function Characterization Collaborating for Impact: Navigating Partnerships and Overcoming Challenges across the Sustainable Development Goals Highly Efficient Bifunctional NiFe-MOF Array Electrode for Nitrate Reduction to Ammonia and Oxygen Evolution Reactions Efficient Acetoin Production in Bacillus subtilis by Multivariate Modular Metabolic Engineering with Spatiotemporal Modulation Advanced Polymeric Binders in Aqueous Zinc Ion Batteries: Dynamic Diselenide Bonds as Unique Cofactors for Improving Redox Kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1