Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications

Mehdi Letafati;Samad Ali;Matti Latva-Aho
{"title":"Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications","authors":"Mehdi Letafati;Samad Ali;Matti Latva-Aho","doi":"10.1109/TMLCN.2024.3522872","DOIUrl":null,"url":null,"abstract":"In this paper, conditional denoising diffusion probabilistic models (CDiffs) are proposed to enhance the data transmission and reconstruction over wireless channels. The underlying mechanism of diffusion models is to decompose the data generation process over the so-called “denoising” steps. Inspired by this, the key idea is to leverage the generative prior of diffusion models in learning a “noisy-to-clean” transformation of the information signal to help enhance data reconstruction. The proposed scheme could be beneficial for communication scenarios in which a prior knowledge of the information content is available, e.g., in multimedia transmission. Hence, instead of employing complicated channel codes that reduce the information rate, one can exploit diffusion priors for reliable data reconstruction, especially under extreme channel conditions due to low signal-to-noise ratio (SNR), or hardware-impaired communications. The proposed CDiff-assisted receiver is tailored for the scenario of wireless image transmission using MNIST dataset. Our numerical results highlight the reconstruction performance of our scheme compared to the conventional digital communication, as well as the deep neural network (DNN)-based benchmark. It is also shown that more than 10 dB improvement in the reconstruction could be achieved in low SNR regimes, without the need to reduce the information rate for error correction.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"133-146"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816175","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816175/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, conditional denoising diffusion probabilistic models (CDiffs) are proposed to enhance the data transmission and reconstruction over wireless channels. The underlying mechanism of diffusion models is to decompose the data generation process over the so-called “denoising” steps. Inspired by this, the key idea is to leverage the generative prior of diffusion models in learning a “noisy-to-clean” transformation of the information signal to help enhance data reconstruction. The proposed scheme could be beneficial for communication scenarios in which a prior knowledge of the information content is available, e.g., in multimedia transmission. Hence, instead of employing complicated channel codes that reduce the information rate, one can exploit diffusion priors for reliable data reconstruction, especially under extreme channel conditions due to low signal-to-noise ratio (SNR), or hardware-impaired communications. The proposed CDiff-assisted receiver is tailored for the scenario of wireless image transmission using MNIST dataset. Our numerical results highlight the reconstruction performance of our scheme compared to the conventional digital communication, as well as the deep neural network (DNN)-based benchmark. It is also shown that more than 10 dB improvement in the reconstruction could be achieved in low SNR regimes, without the need to reduce the information rate for error correction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线通信中增强数据重构的条件去噪扩散概率模型
本文提出了条件去噪扩散概率模型(CDiffs)来增强无线信道上的数据传输和重构。扩散模型的基本机制是将数据生成过程分解为所谓的“去噪”步骤。受此启发,关键思想是利用扩散模型的生成先验来学习信息信号的“噪声到清洁”转换,以帮助增强数据重建。所提出的方案可能有利于可获得信息内容的先验知识的通信场景,例如在多媒体传输中。因此,与其使用降低信息速率的复杂信道代码,不如利用扩散先验进行可靠的数据重建,特别是在由于低信噪比(SNR)或硬件受损通信而导致的极端信道条件下。提出的cdiff辅助接收机是针对使用MNIST数据集的无线图像传输场景量身定制的。与传统的数字通信以及基于深度神经网络(DNN)的基准相比,我们的数值结果突出了我们的方案的重建性能。研究还表明,在低信噪比的情况下,不需要降低纠错的信息率,就可以实现10 dB以上的重建改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asynchronous Real-Time Federated Learning for Anomaly Detection in Microservice Cloud Applications Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications Multi-Agent Reinforcement Learning With Action Masking for UAV-Enabled Mobile Communications Online Learning for Intelligent Thermal Management of Interference-Coupled and Passively Cooled Base Stations Robust and Lightweight Modeling of IoT Network Behaviors From Raw Traffic Packets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1