Copper Oxidation-Induced Nanoscale Deformation of Electromechanical, Laminate Polymer/Graphene Thin Films during Thermal Annealing: Implications for Flexible, Transparent, and Conductive Electrodes.

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-12-12 eCollection Date: 2024-12-27 DOI:10.1021/acsanm.4c06372
Zacary L Croft, Oscar Valenzuela, Connor Thompson, Brendan Whitfield, Garrett Betzko, Guoliang Liu
{"title":"Copper Oxidation-Induced Nanoscale Deformation of Electromechanical, Laminate Polymer/Graphene Thin Films during Thermal Annealing: Implications for Flexible, Transparent, and Conductive Electrodes.","authors":"Zacary L Croft, Oscar Valenzuela, Connor Thompson, Brendan Whitfield, Garrett Betzko, Guoliang Liu","doi":"10.1021/acsanm.4c06372","DOIUrl":null,"url":null,"abstract":"<p><p>The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate. In this work, we demonstrate that under improper annealing conditions, thermal annealing of poly(ether imide)/single-layer graphene (PEI/SLG) thin films on Cu causes detrimental nanoscale structural deformations, which permanently degrade the mechanical properties. Furthermore, we elucidate the mechanisms of PEI/SLG deformation during thermal annealing and find that permanent deformations and cracking are caused by Cu substrate oxidation. This study provides an understanding of annealing-induced deformation in polymer/graphene thin films. We anticipate that this knowledge will be useful for further developing defect-free, graphene-based thin film electronics.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 24","pages":"28829-28840"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c06372","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/27 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate. In this work, we demonstrate that under improper annealing conditions, thermal annealing of poly(ether imide)/single-layer graphene (PEI/SLG) thin films on Cu causes detrimental nanoscale structural deformations, which permanently degrade the mechanical properties. Furthermore, we elucidate the mechanisms of PEI/SLG deformation during thermal annealing and find that permanent deformations and cracking are caused by Cu substrate oxidation. This study provides an understanding of annealing-induced deformation in polymer/graphene thin films. We anticipate that this knowledge will be useful for further developing defect-free, graphene-based thin film electronics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Role of 5-HT in the enteric nervous system and enteroendocrine cells. Issue Editorial Masthead Issue Publication Information ACS Applied Materials & Interfaces Family Early Career Forum 2024 Copper Oxidation-Induced Nanoscale Deformation of Electromechanical, Laminate Polymer/Graphene Thin Films during Thermal Annealing: Implications for Flexible, Transparent, and Conductive Electrodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1