Seasonal effect of PM2.5 exposure in patients with COPD: a multicentre panel study.

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Environmental Science: Processes & Impacts Pub Date : 2025-01-02 DOI:10.1039/d4em00376d
Jin-Young Huh, Hajeong Kim, Shinhee Park, Seung Won Ra, Sung-Yoon Kang, Bock Hyun Jung, Mihye Kim, Sang Min Lee, Sang Pyo Lee, Dirga Kumar Lamichhane, Young-Jun Park, Seon-Jin Lee, Jae Seung Lee, Yeon-Mok Oh, Hwan-Cheol Kim, Sei Won Lee
{"title":"Seasonal effect of PM<sub>2.5</sub> exposure in patients with COPD: a multicentre panel study.","authors":"Jin-Young Huh, Hajeong Kim, Shinhee Park, Seung Won Ra, Sung-Yoon Kang, Bock Hyun Jung, Mihye Kim, Sang Min Lee, Sang Pyo Lee, Dirga Kumar Lamichhane, Young-Jun Park, Seon-Jin Lee, Jae Seung Lee, Yeon-Mok Oh, Hwan-Cheol Kim, Sei Won Lee","doi":"10.1039/d4em00376d","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>: Exposure to particulate matter <2.5 μm (PM<sub>2.5</sub>) is linked to chronic obstructive pulmonary disease (COPD), but most studies lack individual PM<sub>2.5</sub> measurements. Seasonal variation and their impact on clinical outcomes remain understudied. <i>Objective</i>: This study investigated the impact of PM<sub>2.5</sub> concentrations on COPD-related clinical outcomes and their seasonal changes. <i>Methods</i>: A multicentre panel study enrolled 105 COPD patients (age range: 46-82) from July 2019 to August 2020. Their mean forced expiratory volume in 1 second after bronchodilation was 53.9%. Individual PM<sub>2.5</sub> levels were monitored continuously with indoor measurements at residences and outdoor data from the National Ambient Air Quality Monitoring Information System. Clinical parameters, including pulmonary function tests, symptom questionnaires (CAT and SGRQ-C), and impulse oscillometry (IOS), were assessed every three months over the course of one year. Statistical analysis was conducted using a linear mixed-effect model to account for repeated measurements and control for confounding variables, including age, sex, smoking status and socioeconomic status. <i>Results</i>: The mean indoor and outdoor PM<sub>2.5</sub> concentrations were 16.2 ± 8.4 μg m<sup>-3</sup> and 17.2 ± 5.0 μg m<sup>-3</sup>, respectively. Winter had the highest PM<sub>2.5</sub> concentrations (indoor, 18.8 ± 11.7 μg m<sup>3</sup>; outdoor, 22.5 ± 5.0 μg m<sup>-3</sup>). Higher PM<sub>2.5</sub> concentrations significantly correlated with poorer St. George's Respiratory Questionnaire for COPD (SGRQ-C) scores and increased acute exacerbations, particularly in winter. Patients of lower socioeconomic status were more vulnerable. Increased PM<sub>2.5</sub> concentrations were also associated with amplified small airway resistance (<i>R</i>5-<i>R</i>20). <i>Conclusions</i>: PM<sub>2.5</sub> concentration changes are positively correlated with poorer SGRQ-C scores and increased acute exacerbations in COPD patients with significant seasonal variations, especially in winter.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d4em00376d","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Exposure to particulate matter <2.5 μm (PM2.5) is linked to chronic obstructive pulmonary disease (COPD), but most studies lack individual PM2.5 measurements. Seasonal variation and their impact on clinical outcomes remain understudied. Objective: This study investigated the impact of PM2.5 concentrations on COPD-related clinical outcomes and their seasonal changes. Methods: A multicentre panel study enrolled 105 COPD patients (age range: 46-82) from July 2019 to August 2020. Their mean forced expiratory volume in 1 second after bronchodilation was 53.9%. Individual PM2.5 levels were monitored continuously with indoor measurements at residences and outdoor data from the National Ambient Air Quality Monitoring Information System. Clinical parameters, including pulmonary function tests, symptom questionnaires (CAT and SGRQ-C), and impulse oscillometry (IOS), were assessed every three months over the course of one year. Statistical analysis was conducted using a linear mixed-effect model to account for repeated measurements and control for confounding variables, including age, sex, smoking status and socioeconomic status. Results: The mean indoor and outdoor PM2.5 concentrations were 16.2 ± 8.4 μg m-3 and 17.2 ± 5.0 μg m-3, respectively. Winter had the highest PM2.5 concentrations (indoor, 18.8 ± 11.7 μg m3; outdoor, 22.5 ± 5.0 μg m-3). Higher PM2.5 concentrations significantly correlated with poorer St. George's Respiratory Questionnaire for COPD (SGRQ-C) scores and increased acute exacerbations, particularly in winter. Patients of lower socioeconomic status were more vulnerable. Increased PM2.5 concentrations were also associated with amplified small airway resistance (R5-R20). Conclusions: PM2.5 concentration changes are positively correlated with poorer SGRQ-C scores and increased acute exacerbations in COPD patients with significant seasonal variations, especially in winter.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
期刊最新文献
Fingerprinting the emissions of volatile organic compounds emitted from the cooking of oils, herbs, and spices. A theoretical study on the environmental oxidation of fenpyrazamine fungicide initiated by hydroxyl radicals in the aqueous phase. Advancing micro-nano supramolecular assembly mechanisms of natural organic matter by machine learning for unveiling environmental geochemical processes. Environmental impact of an acid-forming alum shale waste rock legacy site in Norway. Seasonal effect of PM2.5 exposure in patients with COPD: a multicentre panel study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1