Matchbox Janus membrane fog collector with highly efficient directional transport.

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nanoscale Horizons Pub Date : 2025-01-02 DOI:10.1039/d4nh00458b
Feifeng Hu, Huayang Zhang, Guangyi Tian, Shangzhen Xie, Zhiguang Guo
{"title":"Matchbox Janus membrane fog collector with highly efficient directional transport.","authors":"Feifeng Hu, Huayang Zhang, Guangyi Tian, Shangzhen Xie, Zhiguang Guo","doi":"10.1039/d4nh00458b","DOIUrl":null,"url":null,"abstract":"<p><p>Coordinating the droplet capture, transport, and shedding processes during fog collection to achieve efficient fog collection is a major challenge. In this study, a copper mesh with different wettability was prepared by chemical etching and thiol modification. The Cu(OH)<sub>2</sub> needle structure on the surface of the samples was characterized by FE-SEM and EDS tests, and the surface of the samples was chemically analyzed by infrared and XPS analyses. A Janus membrane matchbox fog collector was thus designed and assembled with directional transport properties. While achieving directional transport of fog droplets on a grid, the fog capture efficiency was also improved. We built a fog collection test rig in the laboratory and tested the samples at a fog flow rate of 0.8 m s<sup>-1</sup>, and the highest fog collection efficiency reached 6.9 g h<sup>-1</sup> cm<sup>-2</sup>, enabling a long-term and efficient fog collection process even in dynamically changing fog environments. This study demonstrates a wide range of applications to achieve green, low-cost, and efficient fog collection strategies.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00458b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coordinating the droplet capture, transport, and shedding processes during fog collection to achieve efficient fog collection is a major challenge. In this study, a copper mesh with different wettability was prepared by chemical etching and thiol modification. The Cu(OH)2 needle structure on the surface of the samples was characterized by FE-SEM and EDS tests, and the surface of the samples was chemically analyzed by infrared and XPS analyses. A Janus membrane matchbox fog collector was thus designed and assembled with directional transport properties. While achieving directional transport of fog droplets on a grid, the fog capture efficiency was also improved. We built a fog collection test rig in the laboratory and tested the samples at a fog flow rate of 0.8 m s-1, and the highest fog collection efficiency reached 6.9 g h-1 cm-2, enabling a long-term and efficient fog collection process even in dynamically changing fog environments. This study demonstrates a wide range of applications to achieve green, low-cost, and efficient fog collection strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
期刊最新文献
Matchbox Janus membrane fog collector with highly efficient directional transport. Mechanism of oxygen reduction via chemical affinity in NiO/SiO2 interfaces irradiated with keV energy hydrogen and helium ions for heterostructure fabrication. Giant anisotropic piezoresponse of layered ZrSe3. Mechanical properties of two-dimensional material-based thin films: a comprehensive review. Spintronic devices and applications using noncollinear chiral antiferromagnets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1