Whole Genome Sequencing Reveals Substantial Genetic Structure and Evidence of Local Adaptation in Alaskan Red King Crab.

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2024-12-31 eCollection Date: 2025-01-01 DOI:10.1111/eva.70049
Carl A St John, Laura E Timm, Kristen M Gruenthal, Wesley A Larson
{"title":"Whole Genome Sequencing Reveals Substantial Genetic Structure and Evidence of Local Adaptation in Alaskan Red King Crab.","authors":"Carl A St John, Laura E Timm, Kristen M Gruenthal, Wesley A Larson","doi":"10.1111/eva.70049","DOIUrl":null,"url":null,"abstract":"<p><p>High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution. Managers have identified stock structure and local adaptation as crucial information to help understand biomass declines and how to potentially reverse them, with regulation and possible stock enhancement. We generated low-coverage whole genome sequencing (lcWGS) data on red king crabs from five regions: The Aleutian Islands, eastern Bering Sea, northern Bering Sea, Gulf of Alaska, and Southeast Alaska. We used data from millions of genetic markers generated from lcWGS to build on previous studies of population structure in Alaska that used < 100 markers and to investigate local adaptation. We found each of the regions formed their own distinct genetic clusters, some containing subpopulation structure. Most notably, we found that the Gulf of Alaska and eastern Bering Sea were significantly differentiated, something that had not been previously documented. Inbreeding in each region was low and not a concern for fisheries management. We found genetic patterns consistent with local adaptation on several chromosomes and one particularly strong signal on chromosome 100. At this locus, the Gulf of Alaska harbors distinct genetic variation that could facilitate local adaptation to their environment. Our findings support the current practice of managing red king crab at a regional scale, and they strongly favor sourcing broodstock from the target population if stock enhancement is considered to avoid genetic mismatch.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 1","pages":"e70049"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/eva.70049","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution. Managers have identified stock structure and local adaptation as crucial information to help understand biomass declines and how to potentially reverse them, with regulation and possible stock enhancement. We generated low-coverage whole genome sequencing (lcWGS) data on red king crabs from five regions: The Aleutian Islands, eastern Bering Sea, northern Bering Sea, Gulf of Alaska, and Southeast Alaska. We used data from millions of genetic markers generated from lcWGS to build on previous studies of population structure in Alaska that used < 100 markers and to investigate local adaptation. We found each of the regions formed their own distinct genetic clusters, some containing subpopulation structure. Most notably, we found that the Gulf of Alaska and eastern Bering Sea were significantly differentiated, something that had not been previously documented. Inbreeding in each region was low and not a concern for fisheries management. We found genetic patterns consistent with local adaptation on several chromosomes and one particularly strong signal on chromosome 100. At this locus, the Gulf of Alaska harbors distinct genetic variation that could facilitate local adaptation to their environment. Our findings support the current practice of managing red king crab at a regional scale, and they strongly favor sourcing broodstock from the target population if stock enhancement is considered to avoid genetic mismatch.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Genetic Rescue of the Dinaric Lynx Population: Insights for Conservation From Genetic Monitoring and Individual-Based Modelling. Genomic Introgression Between Critically Endangered and Stable Species of Darwin's Tree Finches on the Galapagos Islands. Whole Genome Sequencing Reveals Substantial Genetic Structure and Evidence of Local Adaptation in Alaskan Red King Crab. Managing Friends and Foes: Sanctioning Mutualists in Mixed-Infection Nodules Trades off With Defense Against Antagonists. Evolution in Response to Management Increases Invasiveness Among Experimental Populations of Duckweed (Lemna minor).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1