An Integrated, Portable, and Automatic Digital Detection System for Hepatitis B Virus Using Hybrid Magnetic System.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-01-02 DOI:10.1002/smtd.202401971
Xiaoying Han, Juxin Yin, Yu Wang, Jianjian Zhuang, Kai Hu, Yehong Gui, Haohua Mei, Jizhi Tong, Ying Mu
{"title":"An Integrated, Portable, and Automatic Digital Detection System for Hepatitis B Virus Using Hybrid Magnetic System.","authors":"Xiaoying Han, Juxin Yin, Yu Wang, Jianjian Zhuang, Kai Hu, Yehong Gui, Haohua Mei, Jizhi Tong, Ying Mu","doi":"10.1002/smtd.202401971","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid, precise, and automated diagnosis of infectious diseases is crucial for effective disease management and control. Herein, the integrated portable and automatic digital detection system (IPADS), a novel diagnostic platform for nucleic acid detection is introduced. The device employs the hybrid magnetic system (HMS), which uses an electromagnet and a movable permanent magnet to modulate the magnetic field and control bead movement, increasing nucleic acid extraction efficiency to over 80%, while simplifying the traditional labor-intensive process and enabling quick, low-risk sample processing. Additionally, a disposable cartridge is designed for integrated HMS based preprocessing, with detection performed using digital RPA-Cas12a, enabling rapid, enclosed, and automation-friendly detection across a dynamic range spanning five orders of magnitude, with a sensitivity as low as 100 copies mL<sup>-1</sup> in serum samples. An automated platform further optimizes workflow. As a proof of concept, IPADS is applied to detect hepatitis B virus (HBV) DNA in 20 clinical serum samples, demonstrating high concordance with gold-standard quantitative PCR (qPCR) methods. These results validate the potential of IPADS as a reliable point-of-care testing solution.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401971"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401971","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid, precise, and automated diagnosis of infectious diseases is crucial for effective disease management and control. Herein, the integrated portable and automatic digital detection system (IPADS), a novel diagnostic platform for nucleic acid detection is introduced. The device employs the hybrid magnetic system (HMS), which uses an electromagnet and a movable permanent magnet to modulate the magnetic field and control bead movement, increasing nucleic acid extraction efficiency to over 80%, while simplifying the traditional labor-intensive process and enabling quick, low-risk sample processing. Additionally, a disposable cartridge is designed for integrated HMS based preprocessing, with detection performed using digital RPA-Cas12a, enabling rapid, enclosed, and automation-friendly detection across a dynamic range spanning five orders of magnitude, with a sensitivity as low as 100 copies mL-1 in serum samples. An automated platform further optimizes workflow. As a proof of concept, IPADS is applied to detect hepatitis B virus (HBV) DNA in 20 clinical serum samples, demonstrating high concordance with gold-standard quantitative PCR (qPCR) methods. These results validate the potential of IPADS as a reliable point-of-care testing solution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
An Integrated, Portable, and Automatic Digital Detection System for Hepatitis B Virus Using Hybrid Magnetic System. Enhanced Discriminability of Viral Vectors in Viscous Nanopores. Multifunctional DNA-Metal Nanohybrids Derived From DNA-MgPPi Microhybrids by Rolling Circle Amplification. Rapid High-Throughput Discovery of Molecules With Antimicrobial Activity From Natural Products Enabled by a Nanoliter Matrix SlipChip. Dual-Driven Activation of High-Valence States in Prussian Blue Analogues Via Graphene-Quantum Dots and Ozone-Induced Surface Restructuring for Superior Hydrogen Evolution Electrocatalyst.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1