Multifunctional DNA-Metal Nanohybrids Derived From DNA-MgPPi Microhybrids by Rolling Circle Amplification

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-01-02 DOI:10.1002/smtd.202401881
Young Min Kim, Keonwook Nam, Hee Yeon Kim, Kyungjik Yang, Byeong-Su Kim, Dan Luo, Young Hoon Roh
{"title":"Multifunctional DNA-Metal Nanohybrids Derived From DNA-MgPPi Microhybrids by Rolling Circle Amplification","authors":"Young Min Kim,&nbsp;Keonwook Nam,&nbsp;Hee Yeon Kim,&nbsp;Kyungjik Yang,&nbsp;Byeong-Su Kim,&nbsp;Dan Luo,&nbsp;Young Hoon Roh","doi":"10.1002/smtd.202401881","DOIUrl":null,"url":null,"abstract":"<p>Rolling circle amplification (RCA)-derived ultra-long DNA is highly attractive and versatile because of its diverse functionalities conferred by repeated DNA nanostructures. However, magnesium pyrophosphate (MgPPi) crystals, as byproducts of RCA, electrostatically interact with the DNA to form DNA microhybrids and hamper its broad bioapplications, as its large size is unfavorable for cellular uptake and decreases the density of functional DNA nanostructures. In this study, finely tuned synthesis strategies are developed to condense the microhybrids and replace non-functional MgPPi crystals with various functional metal nanostructures by reducing metal ions. By applying this condensation and reduction process to DNA templated by microhybrids, the particle size of organic-inorganic DNA-MgPPi microhybrids is gradually reconfigured into DNA-Au nanohybrids (≈15 fold difference). The effects of the ion concentration and metal ion type on the reduction process are systematically explored through morphological, structural, and compositional analyses. Upon formation of the nanohybrids, the preservation of Au nanostructures and polymerized DNA nanostructure-driven functions are evaluated. The nanohybrids demonstrated not only metal nanoparticle-based near-infrared absorbance but also DNA aptamer-mediated targeted intracellular delivery, indicating successful hybridization of functional organic–inorganic molecules. This synthesis method for RCA-originated ultra-long DNA-metal nanohybrids shows potential for a variety of biological applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 6","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401881","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rolling circle amplification (RCA)-derived ultra-long DNA is highly attractive and versatile because of its diverse functionalities conferred by repeated DNA nanostructures. However, magnesium pyrophosphate (MgPPi) crystals, as byproducts of RCA, electrostatically interact with the DNA to form DNA microhybrids and hamper its broad bioapplications, as its large size is unfavorable for cellular uptake and decreases the density of functional DNA nanostructures. In this study, finely tuned synthesis strategies are developed to condense the microhybrids and replace non-functional MgPPi crystals with various functional metal nanostructures by reducing metal ions. By applying this condensation and reduction process to DNA templated by microhybrids, the particle size of organic-inorganic DNA-MgPPi microhybrids is gradually reconfigured into DNA-Au nanohybrids (≈15 fold difference). The effects of the ion concentration and metal ion type on the reduction process are systematically explored through morphological, structural, and compositional analyses. Upon formation of the nanohybrids, the preservation of Au nanostructures and polymerized DNA nanostructure-driven functions are evaluated. The nanohybrids demonstrated not only metal nanoparticle-based near-infrared absorbance but also DNA aptamer-mediated targeted intracellular delivery, indicating successful hybridization of functional organic–inorganic molecules. This synthesis method for RCA-originated ultra-long DNA-metal nanohybrids shows potential for a variety of biological applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从DNA-MgPPi微杂交种中获得多功能dna -金属纳米杂交种。
滚动环扩增(RCA)衍生的超长DNA是非常有吸引力的和通用的,因为它具有重复DNA纳米结构赋予的多种功能。然而,作为RCA的副产物,焦磷酸镁(MgPPi)晶体与DNA静电相互作用形成DNA微杂交,阻碍了其广泛的生物应用,因为它的大尺寸不利于细胞摄取,降低了功能DNA纳米结构的密度。在本研究中,我们制定了精细的合成策略,通过还原金属离子来凝聚微杂化MgPPi晶体,并用各种功能的金属纳米结构取代非功能的MgPPi晶体。通过将这种缩合还原过程应用于微杂化DNA模板,将有机-无机DNA- mgppi微杂化物的粒径逐渐重新配置为DNA- au纳米杂化物(相差约15倍)。通过形态、结构和成分分析,系统地探讨了离子浓度和金属离子类型对还原过程的影响。在形成纳米杂化体后,评估了金纳米结构和聚合DNA纳米结构驱动功能的保存。这些纳米杂交种不仅表现出基于金属纳米颗粒的近红外吸收,而且还表现出DNA适体介导的细胞内靶向递送,表明功能性有机-无机分子成功杂交。这种rca源超长dna -金属纳米杂化体的合成方法具有广泛的生物学应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
MRI-Compatible Fiber Ion Sensors Enable Simultaneous Monitoring of Extracellular Ion Fluctuation and Whole-Brain fMRI. Selectively Dispersed Ruthenium Nanoparticles on WS2 Nanosheets Fabricated With Plasma Exfoliation and In Situ Polyol-Reduction as Electrocatalysts for Enhanced Hydrogen Evolution Reaction. Twists and Turns of Liquid Crystals Unravelled by Small-Angle Scattering. Multi-Site Co-Doped Hierarchical Porous Carbon for Efficient Iodine Conversion and Uniform Zinc Deposition in Zinc-Iodine Batteries. Enhanced Interfacial Stability and Reaction Kinetics Through Solvation Engineering and Water-Induced Hydrolysis in Zinc Metal Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1