Sustainable biomethane production from waste biomass: challenges associated with process optimization in improving the yield.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2025-01-02 DOI:10.1007/s11356-024-35864-5
Kadimpati Kishore Kumar, Grzegorz Cema, Aleksandra Ziembińska-Buczyńska, Gamal Kamel Hassan, Mohamed Saad Hellal, Joanna Surmacz-Górska
{"title":"Sustainable biomethane production from waste biomass: challenges associated with process optimization in improving the yield.","authors":"Kadimpati Kishore Kumar, Grzegorz Cema, Aleksandra Ziembińska-Buczyńska, Gamal Kamel Hassan, Mohamed Saad Hellal, Joanna Surmacz-Górska","doi":"10.1007/s11356-024-35864-5","DOIUrl":null,"url":null,"abstract":"<p><p>Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources. The range of process of variables such as carbon-nitrogen (C:N) ratio (13.6-32.5), temperature (30-56 °C), pH (6-8.5), HRT (3-30 days), and OLR (1-10 g VS m<sup>3</sup> day<sup>-1</sup>) were discussed. The review examined recent technologies and innovative methods that improve the productivity of anaerobic digestion, increase biogas output, and advance process management. Several obstacles remain to be addressed, including substrate availability and quality, management of process parameters, and the handling of digestate for sustainable bio-methane production. The final section of the review emphasizes the necessity to optimize process parameters, ensure sustainability, address existing issues, and initiate further research to improve the performance of the AD process for a more sustainable and circular economy. Anaerobic digestion has the potential to significantly contribute to climate change mitigation, waste elimination, and the provision of a sustainable energy source for the future.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35864-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources. The range of process of variables such as carbon-nitrogen (C:N) ratio (13.6-32.5), temperature (30-56 °C), pH (6-8.5), HRT (3-30 days), and OLR (1-10 g VS m3 day-1) were discussed. The review examined recent technologies and innovative methods that improve the productivity of anaerobic digestion, increase biogas output, and advance process management. Several obstacles remain to be addressed, including substrate availability and quality, management of process parameters, and the handling of digestate for sustainable bio-methane production. The final section of the review emphasizes the necessity to optimize process parameters, ensure sustainability, address existing issues, and initiate further research to improve the performance of the AD process for a more sustainable and circular economy. Anaerobic digestion has the potential to significantly contribute to climate change mitigation, waste elimination, and the provision of a sustainable energy source for the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Cost-effective production of kombucha bacterial cellulose by evaluating nutrient sources, quality assessment, and dyeing methods. Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation. Geochemical signatures and contamination levels of rare earth elements in soil profiles controlled by parent rock and soil properties. Barriers to transition to resource-oriented sanitation in rural Ethiopia. Comprehensive screening and analysis of pharmaceuticals and pharmaceutically active chemicals in wastewater: health and environmental hazards and removal efficiency of wastewater treatment plant in Malaysia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1