Quantitative Histopathology Analysis Based on Label-free Multiphoton Imaging for Breast Cancer Diagnosis and Neoadjuvant Immunotherapy Response Assessment.

IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Sciences Pub Date : 2025-01-01 DOI:10.7150/ijbs.102744
Ruiqi Zhong, Ying Zhang, Wenzhuo Qiu, Kaipeng Zhang, Qianqian Feng, Xiuxue Cao, Qixin Huang, Yijing Zhang, Yuanyuan Guo, Jia Guo, Lingyu Zhao, Xiuhong Wang, Shuhao Wang, Lifang Cui, Aimin Wang, Haili Qian, Fei Ma
{"title":"Quantitative Histopathology Analysis Based on Label-free Multiphoton Imaging for Breast Cancer Diagnosis and Neoadjuvant Immunotherapy Response Assessment.","authors":"Ruiqi Zhong, Ying Zhang, Wenzhuo Qiu, Kaipeng Zhang, Qianqian Feng, Xiuxue Cao, Qixin Huang, Yijing Zhang, Yuanyuan Guo, Jia Guo, Lingyu Zhao, Xiuhong Wang, Shuhao Wang, Lifang Cui, Aimin Wang, Haili Qian, Fei Ma","doi":"10.7150/ijbs.102744","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate diagnosis and assessment of breast cancer treatment responses are critical challenges in clinical practice, influencing patient treatment strategies and ultimately long-term prognosis. Currently, diagnosing breast cancer and evaluating the efficacy of neoadjuvant immunotherapy (NAIT) primarily rely on pathological identification of tumor cell morphology, count, and arrangement. However, when tumors are small, the tumors and tumor beds are difficult to detect; relying solely on tumor cell identification may lead to false negatives. In this study, we used the label-free multiphoton microscopy (MPM) method to quantitatively analyze breast tissue at the cellular, extracellular, and textural levels, and identified 11 key factors that can effectively distinguish different types of breast diseases. Key factors and clinical data are used to train a two-stage machine learning automatic diagnosis model, MINT, to accurately diagnose breast cancer. The classification capability of MINT was validated in independent cohorts (stage 1 AUC = 0.92; stage 2 AUC = 1.00). Furthermore, we also found that some factors could predict and assess the efficacy of NAIT, demonstrating the potential of label-free MPM in breast cancer diagnosis and treatment. We envision that in the future, label-free MPM can be used to complement stromal and textural information in pathological tissue, benefiting breast cancer diagnosis and neoadjuvant therapy efficacy prediction, thereby assisting clinicians in formulating personalized treatment plans.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"21 1","pages":"363-381"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7150/ijbs.102744","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate diagnosis and assessment of breast cancer treatment responses are critical challenges in clinical practice, influencing patient treatment strategies and ultimately long-term prognosis. Currently, diagnosing breast cancer and evaluating the efficacy of neoadjuvant immunotherapy (NAIT) primarily rely on pathological identification of tumor cell morphology, count, and arrangement. However, when tumors are small, the tumors and tumor beds are difficult to detect; relying solely on tumor cell identification may lead to false negatives. In this study, we used the label-free multiphoton microscopy (MPM) method to quantitatively analyze breast tissue at the cellular, extracellular, and textural levels, and identified 11 key factors that can effectively distinguish different types of breast diseases. Key factors and clinical data are used to train a two-stage machine learning automatic diagnosis model, MINT, to accurately diagnose breast cancer. The classification capability of MINT was validated in independent cohorts (stage 1 AUC = 0.92; stage 2 AUC = 1.00). Furthermore, we also found that some factors could predict and assess the efficacy of NAIT, demonstrating the potential of label-free MPM in breast cancer diagnosis and treatment. We envision that in the future, label-free MPM can be used to complement stromal and textural information in pathological tissue, benefiting breast cancer diagnosis and neoadjuvant therapy efficacy prediction, thereby assisting clinicians in formulating personalized treatment plans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无标记多光子成像的乳腺癌诊断定量组织病理学分析及新辅助免疫治疗反应评估。
准确诊断和评估乳腺癌治疗反应是临床实践中的关键挑战,影响患者的治疗策略和最终的长期预后。目前,乳腺癌的诊断和评价新辅助免疫治疗(NAIT)的疗效主要依赖于肿瘤细胞形态、计数和排列的病理鉴定。然而,当肿瘤很小时,肿瘤和肿瘤床很难被发现;单纯依靠肿瘤细胞鉴定可能导致假阴性。在本研究中,我们使用无标记多光子显微镜(MPM)方法从细胞、细胞外和质地水平对乳腺组织进行定量分析,并确定了11个可以有效区分不同类型乳腺疾病的关键因素。使用关键因素和临床数据来训练一个两阶段机器学习自动诊断模型MINT,以准确诊断乳腺癌。MINT的分类能力在独立队列中得到验证(一期AUC = 0.92;第二阶段AUC = 1.00)。此外,我们还发现一些因素可以预测和评估NAIT的疗效,表明无标记MPM在乳腺癌诊断和治疗中的潜力。我们设想,在未来,无标记的MPM可以用来补充病理组织的基质和质地信息,有利于乳腺癌的诊断和新辅助治疗的疗效预测,从而帮助临床医生制定个性化的治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Sciences
International Journal of Biological Sciences 生物-生化与分子生物学
CiteScore
16.90
自引率
1.10%
发文量
413
审稿时长
1 months
期刊介绍: The International Journal of Biological Sciences is a peer-reviewed, open-access scientific journal published by Ivyspring International Publisher. It dedicates itself to publishing original articles, reviews, and short research communications across all domains of biological sciences.
期刊最新文献
The Role of Mitochondrial Quality Control in Liver Diseases: Dawn of a Therapeutic Era. The E3 ubiquitin ligase MAEA promotes macrophage phagocytosis and inhibits gastrointestinal cancer progression by mediating PARP1 ubiquitination and degradation. Breaking Immunosuppression to Enhance Cancer Stem Cell-Targeted Immunotherapy. FBXW7 Directly Ubiquitinates and Degrades CTNNB1 Mediating the Suppression of ENKUR in Endometrial Cancer. Febuxostat therapy improved the outcomes of cardiorenal syndrome rodent through alleviating xanthine oxidase-induced oxidative stress and mitochondrial dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1