Simultaneous blockade of the CD73/EGFR axis inhibits tumor growth

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY IUBMB Life Pub Date : 2025-01-02 DOI:10.1002/iub.2933
Keivan Ardeshiri, Hadi Hassannia, Ghasem Ghalamfarsa, Hanieh Jafary, Farhad Jadidi
{"title":"Simultaneous blockade of the CD73/EGFR axis inhibits tumor growth","authors":"Keivan Ardeshiri,&nbsp;Hadi Hassannia,&nbsp;Ghasem Ghalamfarsa,&nbsp;Hanieh Jafary,&nbsp;Farhad Jadidi","doi":"10.1002/iub.2933","DOIUrl":null,"url":null,"abstract":"<p>Targeting the influencing factors in tumor growth and expansion in the tumor microenvironment is one of the key approaches to cancer immunotherapy. Various factors in the tumor microenvironment can in cooperation stimulate tumor growth, suppress anti-tumor immune responses, promote drug resistance, and ultimately enhance tumor recurrence. Therefore, due to the dependence and close cooperation of these axes, their combined targeting can have a greater effect compared to their individual targeting. Among the important factors affecting tumor growth in the tumor region, CD73 and EGFR play an important role in tumor growth by stimulating each other's expression and function. Therefore, we intended to use the nanocarriers that we had previously produced and characterized to deliver anti-CD73 and EGFR siRNAs to murine breast cancer 4T1 cells. Silencing CD73 and EGFR could significantly induce cell death in cancer cells. Downregulation of the CD73/EGFR axis also suppressed the migratory and proliferative potential of cancer cells. This therapeutic strategy also inhibited tumor growth in <i>in ovo</i> model. These findings imply that simultaneous targeting of CD73 and EGFR in breast cancer can be considered a novel immunotherapeutic approach that needs further investigation in future studies.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"77 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iub.2933","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Targeting the influencing factors in tumor growth and expansion in the tumor microenvironment is one of the key approaches to cancer immunotherapy. Various factors in the tumor microenvironment can in cooperation stimulate tumor growth, suppress anti-tumor immune responses, promote drug resistance, and ultimately enhance tumor recurrence. Therefore, due to the dependence and close cooperation of these axes, their combined targeting can have a greater effect compared to their individual targeting. Among the important factors affecting tumor growth in the tumor region, CD73 and EGFR play an important role in tumor growth by stimulating each other's expression and function. Therefore, we intended to use the nanocarriers that we had previously produced and characterized to deliver anti-CD73 and EGFR siRNAs to murine breast cancer 4T1 cells. Silencing CD73 and EGFR could significantly induce cell death in cancer cells. Downregulation of the CD73/EGFR axis also suppressed the migratory and proliferative potential of cancer cells. This therapeutic strategy also inhibited tumor growth in in ovo model. These findings imply that simultaneous targeting of CD73 and EGFR in breast cancer can be considered a novel immunotherapeutic approach that needs further investigation in future studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时阻断CD73/EGFR轴抑制肿瘤生长。
靶向肿瘤微环境中影响肿瘤生长和扩张的因素是肿瘤免疫治疗的关键途径之一。肿瘤微环境中的各种因素可以共同刺激肿瘤生长,抑制抗肿瘤免疫反应,促进耐药,最终增强肿瘤复发。因此,由于这些轴之间的相互依赖和密切配合,它们的联合瞄准比单独瞄准的效果更大。在肿瘤区域影响肿瘤生长的重要因素中,CD73和EGFR通过相互刺激表达和功能在肿瘤生长中发挥重要作用。因此,我们打算使用我们之前生产和表征的纳米载体向小鼠乳腺癌4T1细胞递送抗cd73和EGFR sirna。沉默CD73和EGFR可显著诱导癌细胞死亡。CD73/EGFR轴的下调也抑制了癌细胞的迁移和增殖潜能。该治疗策略还能抑制卵圆模型中肿瘤的生长。这些发现表明,同时靶向CD73和EGFR治疗乳腺癌可以被认为是一种新的免疫治疗方法,需要在未来的研究中进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IUBMB Life
IUBMB Life 生物-生化与分子生物学
CiteScore
10.60
自引率
0.00%
发文量
109
审稿时长
4-8 weeks
期刊介绍: IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.
期刊最新文献
Zinc finger protein 169 promotes tumor progress of hepatocellular cancer via up-regulating cyclin-dependent kinase 19 Deciphering the senescence-based tumoral heterogeneity and characteristics in pancreatic cancer: Results from parallel bulk and single-cell transcriptome data CDKN3 as a key regulator of G2M phase in triple-negative breast cancer: Insights from multi-transcriptomic analysis The up-regulation of RIPK3 mediated by ac4C modification promotes oxidative stress-induced granulosa cell senescence by inhibiting the Nrf2/HO-1 pathway CRYAB is upregulated and predicts clinical prognosis in kidney renal clear cell carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1