Induction of PD-1 and CD44 in CD4+ T cells by circulatory extracellular vesicles from severe dengue patients drives endothelial damage via the NF-kB signaling pathway.

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2024-12-31 DOI:10.1128/jvi.01861-24
Sharda Kumari, Ankit Biswas, Tushar Kanti Maiti, Bhaswati Bandyopadhyay, Arup Banerjee
{"title":"Induction of PD-1 and CD44 in CD4<sup>+</sup> T cells by circulatory extracellular vesicles from severe dengue patients drives endothelial damage via the NF-kB signaling pathway.","authors":"Sharda Kumari, Ankit Biswas, Tushar Kanti Maiti, Bhaswati Bandyopadhyay, Arup Banerjee","doi":"10.1128/jvi.01861-24","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.g., immunoregulatory proteins (PD-L1, CD44). Further, we demonstrated that SD-EV induces PD-1 and CD44 expression on CD4<sup>+</sup> T cells. SD-EV-modulated CD4<sup>+</sup> T (SD-EV-CD4) cells released secretome delayed endothelial cell (EC) migration, arrested them in the G1 phase, and augmented the expression of PD-L1 and ICAM-1 expression on EC through the Notch signaling pathway. Blocking SD-EV and CD4<sup>+</sup> T-cell interaction through the PD-1/PD-L1 pathway partially rescued the CD4<sup>+</sup> T cell's effect on EC but did not alter ICAM-1 expression on EC. We observed that the ICAM-1 expression on EC and hyaluronic acid (HA) release from EC was mediated by CD44, which was elevated on SD-EV-modulated CD4<sup>+</sup> T cells (SD-EV-CD4), indicating a permeability defect. Blocking of CD44 on SD-EV-CD4 significantly reduced ICAM-1 expression on EC. Further, depletion of specific cytokines, e.g., TNF-α and not IFN-γ from the SD-EV-CD4 secretome, reduced ICAM-1 expression, decreased transendothelial electrical resistance, and induced apoptosis on EC significantly. Treatment with NF-kB inhibitor before secretome addition to EC reduced ICAM-1 expression on EC. In conclusion, we provided evidence that SD-EV-CD4 carrying PD-1 and CD44, when interacting with EC, significantly affected endothelial cell properties and may be significant in dengue-mediated endothelial dysfunction.IMPORTANCEExtracellular vesicles (EVs) are small membrane vesicles secreted into biological fluids, including plasma from living cells, holding insights into pathological processes. Studying EVs under pathological conditions is extremely important as they play a selective role in intercellular communication and modulation of immune response under diverse pathological conditions. However, there is less clarity on how circulatory extracellular vesicles influence immune cells during dengue virus (DV) infection and impact pathogenesis. Our present study highlights the impact of severe dengue patients' plasma-derived EV (SD-EV) on CD4<sup>+</sup> T cells and together induce endothelial barrier dysfunction. We provided evidence that SD-EV induces PD-1 and CD44 on CD4<sup>+</sup> T cells and, when interacting with endothelial cells (EC), drives endothelial damage through direct interaction or secretome and may be significant in dengue-mediated endothelial dysfunction.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0186124"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01861-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.g., immunoregulatory proteins (PD-L1, CD44). Further, we demonstrated that SD-EV induces PD-1 and CD44 expression on CD4+ T cells. SD-EV-modulated CD4+ T (SD-EV-CD4) cells released secretome delayed endothelial cell (EC) migration, arrested them in the G1 phase, and augmented the expression of PD-L1 and ICAM-1 expression on EC through the Notch signaling pathway. Blocking SD-EV and CD4+ T-cell interaction through the PD-1/PD-L1 pathway partially rescued the CD4+ T cell's effect on EC but did not alter ICAM-1 expression on EC. We observed that the ICAM-1 expression on EC and hyaluronic acid (HA) release from EC was mediated by CD44, which was elevated on SD-EV-modulated CD4+ T cells (SD-EV-CD4), indicating a permeability defect. Blocking of CD44 on SD-EV-CD4 significantly reduced ICAM-1 expression on EC. Further, depletion of specific cytokines, e.g., TNF-α and not IFN-γ from the SD-EV-CD4 secretome, reduced ICAM-1 expression, decreased transendothelial electrical resistance, and induced apoptosis on EC significantly. Treatment with NF-kB inhibitor before secretome addition to EC reduced ICAM-1 expression on EC. In conclusion, we provided evidence that SD-EV-CD4 carrying PD-1 and CD44, when interacting with EC, significantly affected endothelial cell properties and may be significant in dengue-mediated endothelial dysfunction.IMPORTANCEExtracellular vesicles (EVs) are small membrane vesicles secreted into biological fluids, including plasma from living cells, holding insights into pathological processes. Studying EVs under pathological conditions is extremely important as they play a selective role in intercellular communication and modulation of immune response under diverse pathological conditions. However, there is less clarity on how circulatory extracellular vesicles influence immune cells during dengue virus (DV) infection and impact pathogenesis. Our present study highlights the impact of severe dengue patients' plasma-derived EV (SD-EV) on CD4+ T cells and together induce endothelial barrier dysfunction. We provided evidence that SD-EV induces PD-1 and CD44 on CD4+ T cells and, when interacting with endothelial cells (EC), drives endothelial damage through direct interaction or secretome and may be significant in dengue-mediated endothelial dysfunction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
Betacoronavirus internal protein: role in immune evasion and viral pathogenesis. Discovery of small molecules against porcine reproductive and respiratory syndrome virus replication by targeting NendoU activity. Induction of innate immunity and plant growth promotion in tomato unveils the antiviral nature of bacterial endophytes against groundnut bud necrosis virus. Induction of PD-1 and CD44 in CD4+ T cells by circulatory extracellular vesicles from severe dengue patients drives endothelial damage via the NF-kB signaling pathway. Octahedral small virus-like particles of dengue virus type 2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1