Neonatal T cells unleash innate powers to combat congenital cytomegalovirus infection.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2025-01-02 DOI:10.1172/JCI187789
Simon Grassmann
{"title":"Neonatal T cells unleash innate powers to combat congenital cytomegalovirus infection.","authors":"Simon Grassmann","doi":"10.1172/JCI187789","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately 1 in 200 newborns worldwide are affected by congenital cytomegalovirus (CMV). Most of these cases are asymptomatic due to successful control of the infection by the newborn's immune system. In this issue of the JCI, Semmes et al. characterized the cellular immune response in cord blood of neonates with CMV infection. The authors found that conventional T cells with NK-like features expanded during congenital CMV infection. To exert their antiviral function, these cells relied on Fc receptors, recognizing virus-infected cells bound by IgG. Thereby, the fetal and maternal immune system can optimally cooperate to control CMV infection: maternal IgG crossing the placenta opsonizes virus-infected cells subsequently lysed by neonatal NK-like T cells. This finding suggests that innate-like programming of conventional T cells may have evolved to combat congenital CMV infection, offering insights that could inform the development of future therapies.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI187789","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Approximately 1 in 200 newborns worldwide are affected by congenital cytomegalovirus (CMV). Most of these cases are asymptomatic due to successful control of the infection by the newborn's immune system. In this issue of the JCI, Semmes et al. characterized the cellular immune response in cord blood of neonates with CMV infection. The authors found that conventional T cells with NK-like features expanded during congenital CMV infection. To exert their antiviral function, these cells relied on Fc receptors, recognizing virus-infected cells bound by IgG. Thereby, the fetal and maternal immune system can optimally cooperate to control CMV infection: maternal IgG crossing the placenta opsonizes virus-infected cells subsequently lysed by neonatal NK-like T cells. This finding suggests that innate-like programming of conventional T cells may have evolved to combat congenital CMV infection, offering insights that could inform the development of future therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新生儿T细胞释放先天的力量来对抗先天性巨细胞病毒感染。
全世界大约每200名新生儿中就有1人感染先天性巨细胞病毒(CMV)。由于新生儿的免疫系统成功地控制了感染,这些病例中的大多数是无症状的。在这一期的JCI中,Semmes等人描述了巨细胞病毒感染新生儿脐带血中的细胞免疫反应。作者发现,具有nk样特征的传统T细胞在先天性巨细胞病毒感染期间扩增。为了发挥其抗病毒功能,这些细胞依赖Fc受体,识别与IgG结合的病毒感染细胞。因此,胎儿和母体的免疫系统可以最佳地合作控制巨细胞病毒感染:母体的IgG穿过胎盘,使病毒感染的细胞被新生儿nk样T细胞溶解。这一发现表明,传统T细胞的先天样编程可能已经进化到可以对抗先天性巨细胞病毒感染,这为未来治疗方法的发展提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Aberrant ERK signaling in astrocytes impairs learning and memory in RASopathy-associated BRAF mutant mouse models. Asparagine drives immune evasion in bladder cancer via RIG-I stability and type I IFN signaling. Reduced EIF6 dosage attenuates TP53 activation in models of Shwachman-Diamond syndrome. Super-enhancer-driven EFNA1 fuels tumor progression in cervical cancer via the FOSL2-Src/AKT/STAT3 axis. Purifying and profiling lysosomes to expand understanding of lysosomal dysfunction-associated diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1