12 lead surface ECGs as a surrogate of atrial electrical remodeling - a deep learning based approach

IF 1.3 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of electrocardiology Pub Date : 2024-12-25 DOI:10.1016/j.jelectrocard.2024.153862
Ishan Vatsaraj , Yazan Mohsen , Lukas Grüne , Lucas Steffens , Shane Loeffler , Marc Horlitz , Florian Stöckigt , Natalia Trayanova
{"title":"12 lead surface ECGs as a surrogate of atrial electrical remodeling - a deep learning based approach","authors":"Ishan Vatsaraj ,&nbsp;Yazan Mohsen ,&nbsp;Lukas Grüne ,&nbsp;Lucas Steffens ,&nbsp;Shane Loeffler ,&nbsp;Marc Horlitz ,&nbsp;Florian Stöckigt ,&nbsp;Natalia Trayanova","doi":"10.1016/j.jelectrocard.2024.153862","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Atrial fibrillation (AF), a common arrhythmia, is linked with atrial electrical and structural changes, notably low voltage areas (LVAs) which are associated with poor ablation outcomes and increased thromboembolic risk. This study aims to evaluate the efficacy of a deep learning model applied to 12‑lead ECGs for non-invasively predicting the presence of LVAs, potentially guiding pre-ablation strategies and improving patient outcomes.</div></div><div><h3>Methods</h3><div>A retrospective analysis was conducted on 204 AF patients, who underwent catheter ablation. Pre-procedural sinus rhythm ECGs and electroanatomical maps (EAM) were utilized alongside demographic data to train a deep learning model combining Long Short-Term Memory networks and Convolutional Neural Networks with a cross-attention layer. Model performance was evaluated using a 5-fold cross-validation strategy.</div></div><div><h3>Results</h3><div>The model effectively identified the presence of LVA on the examined atrial walls, achieving accuracies of 78 % for both the anterior and posterior walls, and 82 % for the LA roof. Moreover, it accurately predicted the global left atrial (LA) average voltage &lt;0.7 mV, with an accuracy of 88 %.</div></div><div><h3>Conclusion</h3><div>The study showcases the potential of deep learning applied to 12‑lead ECGs to effectively predict regional LVAs and global LA voltage in AF patients non-invasively. This model offers a promising tool for the pre-ablation assessment of atrial substrate, facilitating personalized therapeutic strategies and potentially enhancing ablation success rates.</div></div>","PeriodicalId":15606,"journal":{"name":"Journal of electrocardiology","volume":"89 ","pages":"Article 153862"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022073624003327","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Atrial fibrillation (AF), a common arrhythmia, is linked with atrial electrical and structural changes, notably low voltage areas (LVAs) which are associated with poor ablation outcomes and increased thromboembolic risk. This study aims to evaluate the efficacy of a deep learning model applied to 12‑lead ECGs for non-invasively predicting the presence of LVAs, potentially guiding pre-ablation strategies and improving patient outcomes.

Methods

A retrospective analysis was conducted on 204 AF patients, who underwent catheter ablation. Pre-procedural sinus rhythm ECGs and electroanatomical maps (EAM) were utilized alongside demographic data to train a deep learning model combining Long Short-Term Memory networks and Convolutional Neural Networks with a cross-attention layer. Model performance was evaluated using a 5-fold cross-validation strategy.

Results

The model effectively identified the presence of LVA on the examined atrial walls, achieving accuracies of 78 % for both the anterior and posterior walls, and 82 % for the LA roof. Moreover, it accurately predicted the global left atrial (LA) average voltage <0.7 mV, with an accuracy of 88 %.

Conclusion

The study showcases the potential of deep learning applied to 12‑lead ECGs to effectively predict regional LVAs and global LA voltage in AF patients non-invasively. This model offers a promising tool for the pre-ablation assessment of atrial substrate, facilitating personalized therapeutic strategies and potentially enhancing ablation success rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
12导联表面心电图作为心房电重构的替代品-一种基于深度学习的方法。
背景和目的:心房颤动(AF)是一种常见的心律失常,与心房电和结构改变有关,特别是低电压区(lva),与不良消融结果和血栓栓塞风险增加有关。本研究旨在评估应用于12导联心电图的深度学习模型的有效性,该模型用于无创预测LVAs的存在,可能指导消融前策略并改善患者预后。方法:对204例房颤患者行导管消融的临床资料进行回顾性分析。术前窦性心律心电图和电解剖图(EAM)与人口统计学数据一起用于训练深度学习模型,该模型结合了长短期记忆网络和具有交叉注意层的卷积神经网络。使用5倍交叉验证策略评估模型性能。结果:该模型有效地识别了被检查心房壁上LVA的存在,对前壁和后壁的准确率均为78%,对左房顶的准确率为82%。结论:该研究展示了深度学习应用于12导联心电图的潜力,可以有效地预测房颤患者的局部lva和整体LA电压。该模型为消融前心房底物评估提供了一个有前景的工具,促进了个性化的治疗策略,并有可能提高消融成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of electrocardiology
Journal of electrocardiology 医学-心血管系统
CiteScore
2.70
自引率
7.70%
发文量
152
审稿时长
38 days
期刊介绍: The Journal of Electrocardiology is devoted exclusively to clinical and experimental studies of the electrical activities of the heart. It seeks to contribute significantly to the accuracy of diagnosis and prognosis and the effective treatment, prevention, or delay of heart disease. Editorial contents include electrocardiography, vectorcardiography, arrhythmias, membrane action potential, cardiac pacing, monitoring defibrillation, instrumentation, drug effects, and computer applications.
期刊最新文献
A dragon in a barn Ventricular preexcitation and narrow QRS tachycardia. What is the diagnosis? Expect the unexpected Challenges in localisation of culprit artery in STEMI A practical review of generative AI in cardiac electrophysiology medical education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1