Autologous transplantation of mitochondria/rAAV IGF-I platforms in human osteoarthritic articular chondrocytes as a novel therapeutic concept for human osteoarthritis.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2024-12-30 DOI:10.1016/j.ymthe.2024.12.047
Gang Zhong, Wei Liu, Jagadeesh K Venkatesan, Dan Wang, Henning Madry, Magali Cucchiarini
{"title":"Autologous transplantation of mitochondria/rAAV IGF-I platforms in human osteoarthritic articular chondrocytes as a novel therapeutic concept for human osteoarthritis.","authors":"Gang Zhong, Wei Liu, Jagadeesh K Venkatesan, Dan Wang, Henning Madry, Magali Cucchiarini","doi":"10.1016/j.ymthe.2024.12.047","DOIUrl":null,"url":null,"abstract":"<p><p>Despite various available treatments, highly prevalent osteoarthritis cannot be cured in patients. In light of evidence showing mitochondria dysfunction during the disease progression, our goal was to develop a novel therapeutic concept based on the transplantation of mitochondria as platforms to deliver recombinant adeno-associated viral (rAAV) gene vectors with a potency for osteoarthritis. For the first time to our best knowledge, we report the successful creation of a safe mitochondria/rAAV system effectively promoting the overexpression of a candidate insulin-like growth factor I (IGF-I) by administration to autologous human osteoarthritic articular chondrocytes versus control conditions (reporter mitochondria/rAAV lacZ system, rAAV-free system, absence of mitochondria transplantation) (up to 8.4-fold difference). The candidate mitochondria/rAAV IGF-I system significantly improved key activities in the transplanted cells (proliferation/survival, extracellular matrix production, mitochondria functions) relative to the control conditions (up to 9.5-fold difference), including when provided in a PF127 hydrogel for reinforced delivery (up to 5.9-fold difference). Such effects were accompanied with increased levels of cartilage-specific SOX9 and Mfn-1 (mitochondria fusion) and with decreased levels of Drp-1 (mitochondria fission) and proinflammatory TNF-α (up to 4.5-fold difference). This study shows the potential of combining the use of mitochondria with rAAV as a promising approach for human OA.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.12.047","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite various available treatments, highly prevalent osteoarthritis cannot be cured in patients. In light of evidence showing mitochondria dysfunction during the disease progression, our goal was to develop a novel therapeutic concept based on the transplantation of mitochondria as platforms to deliver recombinant adeno-associated viral (rAAV) gene vectors with a potency for osteoarthritis. For the first time to our best knowledge, we report the successful creation of a safe mitochondria/rAAV system effectively promoting the overexpression of a candidate insulin-like growth factor I (IGF-I) by administration to autologous human osteoarthritic articular chondrocytes versus control conditions (reporter mitochondria/rAAV lacZ system, rAAV-free system, absence of mitochondria transplantation) (up to 8.4-fold difference). The candidate mitochondria/rAAV IGF-I system significantly improved key activities in the transplanted cells (proliferation/survival, extracellular matrix production, mitochondria functions) relative to the control conditions (up to 9.5-fold difference), including when provided in a PF127 hydrogel for reinforced delivery (up to 5.9-fold difference). Such effects were accompanied with increased levels of cartilage-specific SOX9 and Mfn-1 (mitochondria fusion) and with decreased levels of Drp-1 (mitochondria fission) and proinflammatory TNF-α (up to 4.5-fold difference). This study shows the potential of combining the use of mitochondria with rAAV as a promising approach for human OA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体/rAAV IGF-I平台在人骨关节炎关节软骨细胞内的自体移植作为治疗人骨关节炎的新概念
尽管有各种可用的治疗方法,但高度流行的骨关节炎患者无法治愈。鉴于有证据表明线粒体在疾病进展过程中存在功能障碍,我们的目标是开发一种基于线粒体移植作为平台的新型治疗概念,以传递具有骨关节炎效能的重组腺相关病毒(rAAV)基因载体。据我们所知,我们首次成功创建了一个安全的线粒体/rAAV系统,通过给药于自体人骨关节炎关节软骨细胞,有效地促进候选胰岛素样生长因子I (IGF-I)的过表达,而不是对照条件(报告线粒体/rAAV lacZ系统,rAAV-free系统,缺乏线粒体移植)(高达8.4倍的差异)。与对照条件相比,候选线粒体/rAAV IGF-I系统显著改善了移植细胞的关键活性(增殖/存活、细胞外基质产生、线粒体功能)(差异达9.5倍),包括在PF127水凝胶中加强递送时(差异达5.9倍)。这种影响伴随着软骨特异性SOX9和Mfn-1(线粒体融合)水平的增加,Drp-1(线粒体裂变)和促炎TNF-α水平的降低(差异高达4.5倍)。这项研究显示了将线粒体与rAAV结合使用作为治疗人类OA的一种有前景的方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
A Comprehensive Atlas of AAV Tropism in the Mouse. Engineering Resilient CAR T Cells for Immunosuppressive Environment. GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy. Pharmacological blocking of microfibrillar-associated protein 4 reduces retinal neoangiogenesis and vascular leakage. Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1