{"title":"Precision Nanotherapy for Spinal Cord Injury: Modulating SLC16A3 With Methylprednisolone-Loaded Nanoparticles.","authors":"Jianwei Lv, Shibo Ma, Duo Shan","doi":"10.14245/ns.2448814.407","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Spinal Cord Injury (SCI) leads to severe motor and sensory deficits, with limited treatment options. This study investigates how methylprednisolone-loaded nanoparticles (MP-NPs) modulate SCI repair by targeting Solute Carrier Family 16 Member 3 (SLC16A3) and reshaping the macrophage-inflammatory microenvironment.</p><p><strong>Methods: </strong>Transcriptome data were analyzed to identify differentially expressed genes (DEGs) associated with SCI. Immune infiltration and WGCNA analyses identified genes linked to M2 macrophage polarization, pinpointing SLC16A3 as a key regulatory factor. MP-NPs were synthesized, characterized, and tested for their effects on macrophage polarization, neuronal protection, and SCI recovery in rats.</p><p><strong>Results: </strong>We identified 612 DEGs related to inflammation and immune response in SCI. SLC16A3, upregulated in SCI, was downregulated by MP-NPs. In vitro, MP-NPs promoted M2 macrophage polarization, enhanced neuronal survival, and supported neural stem cell (NSC) differentiation. In vivo, MP-NPs significantly improved motor recovery, reduced inflammation, and facilitated neural repair in SCI rats.</p><p><strong>Conclusion: </strong>MP-NPs downregulate SLC16A3 and modulate the macrophage-inflammatory environment, promoting neural repair and functional recovery in SCI, offering a promising therapeutic strategy.</p>","PeriodicalId":19269,"journal":{"name":"Neurospine","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurospine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14245/ns.2448814.407","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Spinal Cord Injury (SCI) leads to severe motor and sensory deficits, with limited treatment options. This study investigates how methylprednisolone-loaded nanoparticles (MP-NPs) modulate SCI repair by targeting Solute Carrier Family 16 Member 3 (SLC16A3) and reshaping the macrophage-inflammatory microenvironment.
Methods: Transcriptome data were analyzed to identify differentially expressed genes (DEGs) associated with SCI. Immune infiltration and WGCNA analyses identified genes linked to M2 macrophage polarization, pinpointing SLC16A3 as a key regulatory factor. MP-NPs were synthesized, characterized, and tested for their effects on macrophage polarization, neuronal protection, and SCI recovery in rats.
Results: We identified 612 DEGs related to inflammation and immune response in SCI. SLC16A3, upregulated in SCI, was downregulated by MP-NPs. In vitro, MP-NPs promoted M2 macrophage polarization, enhanced neuronal survival, and supported neural stem cell (NSC) differentiation. In vivo, MP-NPs significantly improved motor recovery, reduced inflammation, and facilitated neural repair in SCI rats.
Conclusion: MP-NPs downregulate SLC16A3 and modulate the macrophage-inflammatory environment, promoting neural repair and functional recovery in SCI, offering a promising therapeutic strategy.