Orchestrating the frontline: HDAC3-miKO recruits macrophage reinforcements for accelerated myelin debris clearance after stroke.

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Theranostics Pub Date : 2025-01-01 DOI:10.7150/thno.103449
Jiaying Li, Chenran Wang, Yue Zhang, Yichen Huang, Ziyu Shi, Yuwen Zhang, Yana Wang, Shuning Chen, Yiwen Yuan, He Wang, Leilei Mao, Yanqin Gao
{"title":"Orchestrating the frontline: HDAC3-miKO recruits macrophage reinforcements for accelerated myelin debris clearance after stroke.","authors":"Jiaying Li, Chenran Wang, Yue Zhang, Yichen Huang, Ziyu Shi, Yuwen Zhang, Yana Wang, Shuning Chen, Yiwen Yuan, He Wang, Leilei Mao, Yanqin Gao","doi":"10.7150/thno.103449","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Rational:</i></b> White matter has emerged as a key therapeutic target in ischemic stroke due to its role in sensorimotor and cognitive outcomes. Our recent findings have preliminarily revealed a potential link between microglial HDAC3 and white matter injury following stroke. However, the mechanisms by which microglial HDAC3 mediates these effects remain unclear. <b><i>Methods</i></b> <i>:</i> We generated microglia-specific HDAC3 knockout mice (HDAC3-miKO). DTI, electrophysiological technique and transmission electron microscopy were used to assess HDAC3-miKO's effects on white matter. RNA sequencing, flow cytometry, immunofluorescence staining and <i>ex vivo</i> phagocytosis assay were conducted to investigate the mechanism by which HDAC3-miKO ameliorated white matter injury. Macrophage depletion and reconstitution experiments further confirmed the involvement of macrophage CCR2 in the enhanced white matter repair and sensorimotor function in HDAC3-miKO mice. <b><i>Results</i></b> <i>:</i> HDAC3-miKO promoted post-stroke oligodendrogenesis and long-term histological and functional integrity of white matter without affecting early-stage white matter integrity. In the acute phase, HDAC3-deficient microglia showed enhanced chemotaxis, recruiting macrophages to the infarct core probably by CCL2/CCL7, where dMBP-labelled myelin debris surged and coincided with their infiltration. Infiltrated macrophages outperformed resident microglia in myelin phagocytosis, potentially serving as true pioneers in myelin debris clearance. Although macrophage phagocytosis potential was similar between HDAC3-miKO and WT mice, increased macrophage numbers in HDAC3-miKO accelerated myelin debris clearance. Reconstitution with CCR2-KO macrophages in HDAC3-miKO mice slowed this clearance, reversing HDAC3-miKO's beneficial effects. <b><i>Conclusions</i></b> <i>:</i> Our study demonstrates that HDAC3-deficient microglia promote post-stroke remyelination by recruiting macrophages to accelerate myelin debris clearance, underscoring the essential role of infiltrated macrophages in HDAC3-miKO-induced beneficial outcomes. These findings advance our understanding of microglial HDAC3's role and suggest therapeutic potential for targeting microglial HDAC3 in ischemic stroke.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 2","pages":"632-655"},"PeriodicalIF":12.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.103449","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rational: White matter has emerged as a key therapeutic target in ischemic stroke due to its role in sensorimotor and cognitive outcomes. Our recent findings have preliminarily revealed a potential link between microglial HDAC3 and white matter injury following stroke. However, the mechanisms by which microglial HDAC3 mediates these effects remain unclear. Methods : We generated microglia-specific HDAC3 knockout mice (HDAC3-miKO). DTI, electrophysiological technique and transmission electron microscopy were used to assess HDAC3-miKO's effects on white matter. RNA sequencing, flow cytometry, immunofluorescence staining and ex vivo phagocytosis assay were conducted to investigate the mechanism by which HDAC3-miKO ameliorated white matter injury. Macrophage depletion and reconstitution experiments further confirmed the involvement of macrophage CCR2 in the enhanced white matter repair and sensorimotor function in HDAC3-miKO mice. Results : HDAC3-miKO promoted post-stroke oligodendrogenesis and long-term histological and functional integrity of white matter without affecting early-stage white matter integrity. In the acute phase, HDAC3-deficient microglia showed enhanced chemotaxis, recruiting macrophages to the infarct core probably by CCL2/CCL7, where dMBP-labelled myelin debris surged and coincided with their infiltration. Infiltrated macrophages outperformed resident microglia in myelin phagocytosis, potentially serving as true pioneers in myelin debris clearance. Although macrophage phagocytosis potential was similar between HDAC3-miKO and WT mice, increased macrophage numbers in HDAC3-miKO accelerated myelin debris clearance. Reconstitution with CCR2-KO macrophages in HDAC3-miKO mice slowed this clearance, reversing HDAC3-miKO's beneficial effects. Conclusions : Our study demonstrates that HDAC3-deficient microglia promote post-stroke remyelination by recruiting macrophages to accelerate myelin debris clearance, underscoring the essential role of infiltrated macrophages in HDAC3-miKO-induced beneficial outcomes. These findings advance our understanding of microglial HDAC3's role and suggest therapeutic potential for targeting microglial HDAC3 in ischemic stroke.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协调前线:HDAC3-miKO 招募巨噬细胞增援,加速中风后髓鞘碎片的清除。
理性:由于白质在感觉运动和认知结果中的作用,它已成为缺血性中风的关键治疗靶点。我们最近的研究结果初步揭示了脑卒中后小胶质细胞HDAC3与白质损伤之间的潜在联系。然而,小胶质细胞HDAC3介导这些作用的机制尚不清楚。方法:制备小胶质细胞特异性HDAC3敲除小鼠(HDAC3- miko)。采用DTI、电生理技术和透射电镜观察HDAC3-miKO对脑白质的影响。通过RNA测序、流式细胞术、免疫荧光染色和体外吞噬实验,探讨HDAC3-miKO改善脑白质损伤的机制。巨噬细胞耗损和重构实验进一步证实了巨噬细胞CCR2参与HDAC3-miKO小鼠白质修复和感觉运动功能的增强。结果:HDAC3-miKO在不影响早期白质完整性的情况下促进脑卒中后少突胶质细胞形成和长期白质组织学和功能完整性。在急性期,hdac3缺失的小胶质细胞表现出增强的趋化性,可能通过CCL2/CCL7将巨噬细胞招募到梗死核心,dmbp标记的髓磷脂碎片激增,并与它们的浸润相一致。浸润的巨噬细胞在髓磷脂吞噬方面优于驻留的小胶质细胞,可能成为髓磷脂碎片清除的真正先驱。尽管HDAC3-miKO和WT小鼠的巨噬细胞吞噬电位相似,但HDAC3-miKO中巨噬细胞数量的增加加速了髓磷脂碎片的清除。在HDAC3-miKO小鼠中重建CCR2-KO巨噬细胞减缓了这种清除,逆转了HDAC3-miKO的有益作用。结论:我们的研究表明,hdac3缺失的小胶质细胞通过招募巨噬细胞加速髓磷脂碎片的清除来促进脑卒中后的再髓鞘形成,强调了浸润的巨噬细胞在hdac3 - miko诱导的有益结果中的重要作用。这些发现促进了我们对小胶质细胞HDAC3的作用的理解,并提示靶向小胶质细胞HDAC3在缺血性卒中中的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
期刊最新文献
P2X7R antagonism suppresses long-lasting brain hyperexcitability following traumatic brain injury in mice. Erratum: Edaravone-Encapsulated Agonistic Micelles Rescue Ischemic Brain Tissue by Tuning Blood-Brain Barrier Permeability: Erratum. Erratum: Investigation of the role and mechanism of ARHGAP5-mediated colorectal cancer metastasis: Erratum. Erratum: Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression: Erratum. Erratum: Redox Regulation of Stem-like Cells Though the CD44v-xCT Axis in Colorectal Cancer: Mechanisms and Therapeutic Implications: Erratum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1