Adaptive Measurement of Change in the Context of Item Parameter Drift.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2024-12-30 DOI:10.1177/01466216241310599
Allison W Cooperman, Ming Him Tai, Joseph N DeWeese, David J Weiss
{"title":"Adaptive Measurement of Change in the Context of Item Parameter Drift.","authors":"Allison W Cooperman, Ming Him Tai, Joseph N DeWeese, David J Weiss","doi":"10.1177/01466216241310599","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive measurement of change (AMC) uses computerized adaptive testing (CAT) to measure and test the significance of intraindividual change on one or more latent traits. The extant AMC research has so far assumed that item parameter values are constant across testing occasions. Yet item parameters might change over time, a phenomenon termed item parameter drift (IPD). The current study examined AMC's performance in the context of IPD with unidimensional, dichotomous CATs across two testing occasions. A Monte Carlo simulation revealed that AMC false and true positive rates were primarily affected by changes in the difficulty parameter. False positive rates were related to the location of the drift items relative to the latent trait continuum, as the administration of more drift items spuriously increased the magnitude of estimated trait change. Moreover, true positive rates depended upon an interaction between the direction of difficulty parameter drift and the latent trait change trajectory. A follow-up simulation further showed that the number of items in the CAT with parameter drift impacted AMC false and true positive rates, with these relationships moderated by IPD characteristics and the latent trait change trajectory. It is recommended that test administrators confirm the absence of IPD prior to using AMC for measuring intraindividual change with educational and psychological tests.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216241310599"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683792/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216241310599","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptive measurement of change (AMC) uses computerized adaptive testing (CAT) to measure and test the significance of intraindividual change on one or more latent traits. The extant AMC research has so far assumed that item parameter values are constant across testing occasions. Yet item parameters might change over time, a phenomenon termed item parameter drift (IPD). The current study examined AMC's performance in the context of IPD with unidimensional, dichotomous CATs across two testing occasions. A Monte Carlo simulation revealed that AMC false and true positive rates were primarily affected by changes in the difficulty parameter. False positive rates were related to the location of the drift items relative to the latent trait continuum, as the administration of more drift items spuriously increased the magnitude of estimated trait change. Moreover, true positive rates depended upon an interaction between the direction of difficulty parameter drift and the latent trait change trajectory. A follow-up simulation further showed that the number of items in the CAT with parameter drift impacted AMC false and true positive rates, with these relationships moderated by IPD characteristics and the latent trait change trajectory. It is recommended that test administrators confirm the absence of IPD prior to using AMC for measuring intraindividual change with educational and psychological tests.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
项目参数漂移情况下变化的自适应测量。
自适应变化测量(AMC)采用计算机化的自适应测试(CAT)来测量和测试个体内部变化对一个或多个潜在特征的显著性。现有的AMC研究迄今为止都假设项目参数值在不同的测试场合是恒定的。然而,项目参数可能会随着时间的推移而改变,这种现象被称为项目参数漂移(IPD)。目前的研究通过两个测试场合,用一维、二分类cat检查了AMC在IPD背景下的表现。蒙特卡罗模拟表明,AMC的假阳性率和真阳性率主要受难度参数变化的影响。假阳性率与漂移项目相对于潜在特质连续体的位置有关,因为更多的漂移项目的管理虚假地增加了估计的特质变化的幅度。此外,真阳性率依赖于难度参数漂移方向与潜在特质变化轨迹的交互作用。后续模拟进一步表明,具有参数漂移的CAT条目数量影响AMC假阳性率和真阳性率,这种关系受到IPD特征和潜在特质变化轨迹的调节。建议考试管理员在使用AMC进行教育和心理测试来测量个人内部变化之前,先确认IPD的缺失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
R Package for Calculating Estimators of the Proportion of Explained Variance and Standardized Regression Coefficients in Multiply Imputed Datasets. An Experimental Design to Investigate Item Parameter Drift. Adaptive Measurement of Change in the Context of Item Parameter Drift. Inference of Correlations Among Testlet Effects: A Latent Variable Selection Method. An Information Manifold Perspective for Analyzing Test Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1