Genome wide analysis of the sox32 gene in germline maintenance and differentiation in leopard coral grouper (Plectropomus leopardus).

Mingyi Wang, Hui Ding, Mingjian Liu, Yurui Gao, Lin Li, Chaofan Jin, Zhenmin Bao, Bo Wang, Jingjie Hu
{"title":"Genome wide analysis of the sox32 gene in germline maintenance and differentiation in leopard coral grouper (Plectropomus leopardus).","authors":"Mingyi Wang, Hui Ding, Mingjian Liu, Yurui Gao, Lin Li, Chaofan Jin, Zhenmin Bao, Bo Wang, Jingjie Hu","doi":"10.1016/j.cbd.2024.101402","DOIUrl":null,"url":null,"abstract":"<p><p>The Sox family genes, as a group of transcription factors, are widely expressed in vertebrates and play a critical role in reproduction and development. The present study reported that 26 sox genes were identified from the genome and transcriptome of P. leopardus. The phylogenetic tree construction, chromosome localization, and gene structure analysis were executed to verify the evolutionary relationships, gene duplication, and deletion variations of P. leopardus sox genes in evolution. The sequence alignment revealed the HMG-box domain was highly conserved throughout the Sox gene family. The expression profile showed expression levels of sox genes showed tissue specificity. The dimorphic expression pattern of most sox genes in intersex and adult gonads was also observed, suggesting an important role of sox genes for sex differentiation in P. leopardus. Notably, sox32 was specifically highly expressed in gonadal tissues and might play a novel role within the gonads. The fluorescent in situ hybridization (FISH) showed sox32 mRNA was detected in germ stem cells and oocytes of different stages, and lowly expressed in sertoli cells. In testis, sox32 was not detected in male germ cells. Our results provided new insights into the sox32 that might be involved in gonadal development and differentiation in P. leopardus. To sum up, this study comprehensively analyzed the Sox gene family of P. leopardus and provided new insights into the function of sox genes, which could potentially revolutionize our understanding of the mechanisms of sex determination, sex differentiation, and reproductive development in fish.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"54 ","pages":"101402"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbd.2024.101402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Sox family genes, as a group of transcription factors, are widely expressed in vertebrates and play a critical role in reproduction and development. The present study reported that 26 sox genes were identified from the genome and transcriptome of P. leopardus. The phylogenetic tree construction, chromosome localization, and gene structure analysis were executed to verify the evolutionary relationships, gene duplication, and deletion variations of P. leopardus sox genes in evolution. The sequence alignment revealed the HMG-box domain was highly conserved throughout the Sox gene family. The expression profile showed expression levels of sox genes showed tissue specificity. The dimorphic expression pattern of most sox genes in intersex and adult gonads was also observed, suggesting an important role of sox genes for sex differentiation in P. leopardus. Notably, sox32 was specifically highly expressed in gonadal tissues and might play a novel role within the gonads. The fluorescent in situ hybridization (FISH) showed sox32 mRNA was detected in germ stem cells and oocytes of different stages, and lowly expressed in sertoli cells. In testis, sox32 was not detected in male germ cells. Our results provided new insights into the sox32 that might be involved in gonadal development and differentiation in P. leopardus. To sum up, this study comprehensively analyzed the Sox gene family of P. leopardus and provided new insights into the function of sox genes, which could potentially revolutionize our understanding of the mechanisms of sex determination, sex differentiation, and reproductive development in fish.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gill and brain transcriptomic analysis of mandarin fish(Siniperca chuatsi)reveals hypoxia-induced mitochondrial dysfunction and modulation of metabolism. Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens. 1H NMR-based metabolomic analysis of hypersalinity-induced oviparity in brine shrimp. Genome wide analysis of the sox32 gene in germline maintenance and differentiation in leopard coral grouper (Plectropomus leopardus). Exploring the gut microbiota and metabolome of Lateolabrax japonicus: A multi-omics approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1