Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis

IF 23.7 Q1 MICROBIOLOGY iMeta Pub Date : 2024-12-30 DOI:10.1002/imt2.261
Andong Zha, Ming Qi, Yuankun Deng, Hao Li, Nan Wang, Chengming Wang, Simeng Liao, Dan Wan, Xia Xiong, Peng Liao, Jing Wang, Yulong Yin, Bi'e Tan
{"title":"Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis","authors":"Andong Zha,&nbsp;Ming Qi,&nbsp;Yuankun Deng,&nbsp;Hao Li,&nbsp;Nan Wang,&nbsp;Chengming Wang,&nbsp;Simeng Liao,&nbsp;Dan Wan,&nbsp;Xia Xiong,&nbsp;Peng Liao,&nbsp;Jing Wang,&nbsp;Yulong Yin,&nbsp;Bi'e Tan","doi":"10.1002/imt2.261","DOIUrl":null,"url":null,"abstract":"<p>Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments. Notably, the higher abundance of <i>Bifidobacterium pseudocatenulatum</i> was significantly associated with lower backfat thickness in lean pigs. Microbial-derived lithocholic acid (LCA) species were also significantly enriched in lean pigs and positively correlated with the abundance of <i>B. pseudocatenulatum</i>. In a high-fat diet (HFD)-fed mice model, administration of live <i>B. pseudocatenulatum</i> decreased fat deposition and enhances colonic secondary bile acid biosynthesis. Importantly, pharmacological inhibition of the bile salt hydrolase (BSH), which mediates secondary bile acid biosynthesis, impaired the anti-fat deposition effect of <i>B. pseudocatenulatum</i> in antibiotic-pretreated, HFD-fed mice. Furthermore, dietary LCA also decreased fat deposition in HFD-fed rats and obese pig models. These findings provide mechanistic insights into the anti-fat deposition role of <i>B. pseudocatenulatum</i> and identify BSH as a potential target for preventing excessive fat deposition in humans and animals.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 6","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments. Notably, the higher abundance of Bifidobacterium pseudocatenulatum was significantly associated with lower backfat thickness in lean pigs. Microbial-derived lithocholic acid (LCA) species were also significantly enriched in lean pigs and positively correlated with the abundance of B. pseudocatenulatum. In a high-fat diet (HFD)-fed mice model, administration of live B. pseudocatenulatum decreased fat deposition and enhances colonic secondary bile acid biosynthesis. Importantly, pharmacological inhibition of the bile salt hydrolase (BSH), which mediates secondary bile acid biosynthesis, impaired the anti-fat deposition effect of B. pseudocatenulatum in antibiotic-pretreated, HFD-fed mice. Furthermore, dietary LCA also decreased fat deposition in HFD-fed rats and obese pig models. These findings provide mechanistic insights into the anti-fat deposition role of B. pseudocatenulatum and identify BSH as a potential target for preventing excessive fat deposition in humans and animals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肠道假芽双歧杆菌通过增强次级胆汁酸生物合成来防止脂肪沉积。
肠道微生物群对人类和动物的脂质代谢至关重要。然而,特定肠道微生物群及其相关代谢物如何影响脂肪沉积仍不清楚。在本研究中,我们通过结肠微生物群移植实验证明,瘦猪和肥胖猪的结肠微生物群对脂肪沉积的贡献是不同的。值得注意的是,高丰度的假链双歧杆菌与瘦肉猪较低的背膘厚度显著相关。微生物衍生石胆酸(LCA)种类在瘦肉猪体内也显著富集,并与伪atenulatum B.丰度呈正相关。在高脂肪饮食(HFD)喂养的小鼠模型中,给予活体假芽孢杆菌可减少脂肪沉积并促进结肠次级胆汁酸的生物合成。重要的是,对介导次生胆汁酸生物合成的胆盐水解酶(BSH)的药理抑制,削弱了假atenulatum在抗生素预处理的hfd喂养小鼠中的抗脂肪沉积作用。此外,饲粮中添加LCA还能减少hfd喂养大鼠和肥胖猪模型的脂肪沉积。这些发现为BSH的抗脂肪沉积作用提供了机制见解,并确定了BSH是预防人类和动物过度脂肪沉积的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
lithocholic acid
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
期刊最新文献
Cultivar-specific preference of bacterial communities and host immune receptor kinase modulate the outcomes of rice-microbiota interactions. A vast stem-progenitor cell pool, richly vascular system, and hybrid ossification drive the daily centimeter-scale elongation of bony antlers. Single-cell spatial transcriptomics reveals potential molecular mechanisms of Abelmoschus manihot (L.) medic in treating diabetic kidney disease. Genome-wide CRISPR screen reveals an uncharacterized spliceosome regulator as new candidate immunotherapy target. PhyloSuite v2: The development of an all-in-one, efficient and visualization-oriented suite for molecular dating analysis and other advanced features.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1